Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cerium Separation

Practically all methods for cerium separation are based upon the easy oxidation of cerium to the tetravalent state. Air oxidation of dried hydroxides at... [Pg.84]

Originally, general methods of separation were based on small differences in the solubilities of their salts, for examples the nitrates, and a laborious series of fractional crystallisations had to be carried out to obtain the pure salts. In a few cases, individual lanthanides could be separated because they yielded oxidation states other than three. Thus the commonest lanthanide, cerium, exhibits oxidation states of h-3 and -t-4 hence oxidation of a mixture of lanthanide salts in alkaline solution with chlorine yields the soluble chlorates(I) of all the -1-3 lanthanides (which are not oxidised) but gives a precipitate of cerium(IV) hydroxide, Ce(OH)4, since this is too weak a base to form a chlorate(I). In some cases also, preferential reduction to the metal by sodium amalgam could be used to separate out individual lanthanides. [Pg.441]

Although rare-earth ions are mosdy trivalent, lanthanides can exist in the divalent or tetravalent state when the electronic configuration is close to the stable empty, half-fUed, or completely fiUed sheUs. Thus samarium, europium, thuUum, and ytterbium can exist as divalent cations in certain environments. On the other hand, tetravalent cerium, praseodymium, and terbium are found, even as oxides where trivalent and tetravalent states often coexist. The stabili2ation of the different valence states for particular rare earths is sometimes used for separation from the other trivalent lanthanides. The chemicals properties of the di- and tetravalent ions are significantly different. [Pg.540]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Selective Oxidation. Cerium, the most abundant lanthanide, can be separated easily after oxidation of Ce(III) to Ce(IV), simplifying the subsequent separation of the less abundant lanthanides. Oxidation occurs when bastnaesite is heated in air at 650°C or when the hydroxides are dried in air... [Pg.543]

There are few principal lanthanide deposits, and there are no minerals that are sources for cerium alone. All the lighter lanthanides occur together in any potential deposit, and processes separating the lanthanides are necessary to obtain pure cerium products. [Pg.365]

The production of cerium derivatives begins with ore beneficiation and production of a mineral concentrate. Attack on that concentrate to create a suitable mixed lanthanide precursor for later separation processes follows. Then, depending on the relative market demand for different products, there is either direct production of a cerium-rich material, or separation of the mixed lanthanide precursor into individual pure lanthanide compounds including compounds of pure cerium, or both. The starting mineral determines how the suitable mixed lanthanide precursor is formed. In contrast the separation... [Pg.365]

Ce(IV) extracts more readily iato organic solvents than do the trivalent Ln(III) ions providing a route to 99% and higher purity cerium compounds. Any Ce(III) content of mixed lanthanide aqueous systems can be oxidi2ed to Ce(IV) and the resultiag solutioa, eg, of nitrates, contacted with an organic extractant such as tributyl phosphate dissolved in kerosene. The Ce(IV) preferentially transfers into the organic phase. In a separate step the cerium can be recovered by reduction to Ce(III) followed by extraction back into the aqueous phase. Cerium is then precipitated and calcined to produce the oxide. [Pg.366]

A slight excess of calcium is used and the exothermic reaction, carried out in a tantalum cmcible, is initiated at - 900° C. After physical separation of the upper layer of immiscible fluoride slag, vacuum distillation removes unreacted volatile Ca. Cerium can also be made by the electrolytic reduction of fused chloride. [Pg.368]

Cerium is used in several forms other than as the pure oxide. Only a small fraction of the 70,000 ton Ln total is produced as separated, relatively pure individual Ln derivatives, cerium included. The bulk of the material is consumed as concentrates, cerium included. [Pg.368]

The purity of the cerium-containing materials depends on the appHcation as indicated in Table 3, and purity can mean not only percentage of cerium content but also absence of unwanted components. For some uses, eg, gasoline production catalysts, the lanthanides are often used in the natural-ratio without separation and source Hterature for these appHcations often does not explicitly mention cerium. Conversely, particulady in ferrous metallurgy, cerium is often assumed to be synonymous with rare-earth or lanthanide and these terms are used somewhat interchangeably. [Pg.369]

This tread has iaflueaced the supply and availability of cerium, particularly ia comparison to the availability of lanthanum-rich cerium-poor materials. The iacrease ia La demand for ECC catalysts up to the mid-1980s, together with the need to separate out cerium ia order to make the La-rich Ce-poor compositions increasingly preferred, led to a glut of Ce-based raw materials at that time. Ia 1991, the La-rich Ce-poor portioa of the raw material was ia excess supply over demand. [Pg.370]

Lubrication Additive. Cerium fluoride, CeF, can be used as an additive to lubricant formulations to improve extreme pressure and antiwear behavior (43). The white soHd has a crystal stmcture that can be pictured as [CeF] layers separated by [F] atom sheets, a layer stmcture analogous to that of M0S2, a material that CeF resembles in properties. [Pg.371]

Of the remaining 26 undiscovered elements between hydrogen and uranium, 11 were lanthanoids which Mendeleev s system was unable to characterize because of their great chemical similarity and the new numerological feature dictated by the filling of the 4f orbitals. Only cerium, terbium and erbium were established with certainty in 1871, and the others (except promethium, 1945) were separated and identified in the period 1879 -1907. The isolation of the (unpredicted) noble gases also occurred at this time (1894-8). [Pg.29]

However, solubility, depending as it does on the rather small difference between solvation energy and lattice energy (both large quantities which themselves increase as cation size decreases) and on entropy effects, cannot be simply related to cation radius. No consistent trends are apparent in aqueous, or for that matter nonaqueous, solutions but an empirical distinction can often be made between the lighter cerium lanthanides and the heavier yttrium lanthanides. Thus oxalates, double sulfates and double nitrates of the former are rather less soluble and basic nitrates more soluble than those of the latter. The differences are by no means sharp, but classical separation procedures depended on them. [Pg.1236]

Determination of thorium as sebacate and subsequent ignition to the oxide, ThOa Discussion. This procedure permits of the separation by a single precipitation of thorium from relatively large amounts of the lanthanides (Ce, La, Pr, Nd, Sm, Gd) and also from cerium(IV). [Pg.469]


See other pages where Cerium Separation is mentioned: [Pg.245]    [Pg.245]    [Pg.235]    [Pg.351]    [Pg.544]    [Pg.201]    [Pg.366]    [Pg.366]    [Pg.1227]    [Pg.412]    [Pg.440]    [Pg.473]    [Pg.552]    [Pg.10]    [Pg.50]    [Pg.276]    [Pg.359]    [Pg.420]    [Pg.437]    [Pg.59]    [Pg.25]    [Pg.657]   
See also in sourсe #XX -- [ Pg.99 , Pg.104 ]




SEARCH



© 2024 chempedia.info