Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose triacetate density

Cellulose triacetate Density Shrinkage of film Increases with MWD Decreases with MWD... [Pg.266]

Figure 8 Optical density (280 nm) versus irradiation time (hours) for cellulose triacetate films 0-2,4-DHB D-2H-4BB DHBP-F A-2H-4MB A-HMBP-F and B-HBBP-F. Figure 8 Optical density (280 nm) versus irradiation time (hours) for cellulose triacetate films 0-2,4-DHB D-2H-4BB DHBP-F A-2H-4MB A-HMBP-F and B-HBBP-F.
ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

Regenerated cellulose (cellophane), poly(vinyl alcohol) (PVA), cellulose acetate (CA), cellulose triacetate (CTA), two blends of CTA (B1 and B2) with acrylic acid, poly(dimethylsiloxane) (PDMS), and linear low density polyethylene (LLDPE) membrane... [Pg.129]

Two interesting points are the number of cellobiose units per cell for cellulose triacetates I and II is 4, versus 2 for celluloses I and II and the measured density for cellulose triacetate II was 1.315 g/ cc, which is less than the calculated density of 1.348 g/cc as expected because cellulose triacetate is not 100% crystalline. The above studies on the crystalline structure of cellulose triacetate lead to the conclusion that commercial heat-treated cellulose triacetate is expected to have the cellulose triacetate II crystalline structure. Analysis of the crystal structure of cellulose triacetate continues [55]. [Pg.796]

Chiral stationary phases can exist in different forms [10] (see Fig. 8). Some selectors can be used as particulate phase materials, such as polymeric cellulose triacetate. Polymeric cellulose and amylose derivatives are often coated onto silica carrier particles so that only 20% of the CSP consists of the chiral selector. This combination of stationary phase and chiral polymer combines good chromatographic properties (due to the homogeneous particle size distribution) with a high density of chiral adsorption sites in the polysaccharide derivatives. Another approach is selected for the so-called brush-type CSPs. In these, the chiral selector is covalently bound to the surface of the silica particles. These phases show high chemical inertness and allow the use of a multitude of different mobile phases. [Pg.434]

These materials are composed of small chiral imits that are regularly repeated along the polymeric chain, hence the density of active sites capable of chiral recognition is very high, and this results in a high loading capacity. MicrocrystaUine cellulose triacetate and cellulose tribenzoate have, in some instances, been used for chiral separations as neat, non-coated particles. However, they are inconvenient to pack, are of limited chemical stability, and show low efficiency. [Pg.441]

Figure 9-33. Selectivity of different polymer membranes to He-N2 separation as a function of nitrogen permeability (n, incm /(cm x atm x s)) (1) polyvinylidenechloride (2,4)polyethylene terephthalafe (3) polyvinylfluoride (5) polyvinylchloride (6) polyamide (7) plasfified polyvinylidene chloride (8) cellulose nitrate (9) polypropylene (lO)fluoroplast (26) (ll)co-polymer of isoprene (74%) and acryl-nitryl (26%) (12, 18, 20) different co-polymers of butadiene and acryl-rritryl (13) polyacrylate (14) polycarbonate (15) polyisobutylene (16) bulyl latex (17) co-polymer of vinyl chloride and vinyl acetate (19, 37) butyl acetate of cellulose (21) polyethylene vinyl acetate (22) polybutadiene (23) special polymer SKI-3 (24) natural latex (25) nitryl silicon latex (26) dimethyl silicon latex (27) special polymer SKS-30 (28) special polymer SKMS-50 (29) special polymer SKMS-30 (30, 34, 35) high-density, medium-densily, and low-density polyethylene (31) polyethylene with 5% soot (32) co-polymer of ethylene (90%) and propylene (10%) (33) co-polymer of ethylene (96.5%) and vinyl acetate (3.5%) (36) triacetate of cellulose (38) acetate cellulose (39) polystyrene. Figure 9-33. Selectivity of different polymer membranes to He-N2 separation as a function of nitrogen permeability (n, incm /(cm x atm x s)) (1) polyvinylidenechloride (2,4)polyethylene terephthalafe (3) polyvinylfluoride (5) polyvinylchloride (6) polyamide (7) plasfified polyvinylidene chloride (8) cellulose nitrate (9) polypropylene (lO)fluoroplast (26) (ll)co-polymer of isoprene (74%) and acryl-nitryl (26%) (12, 18, 20) different co-polymers of butadiene and acryl-rritryl (13) polyacrylate (14) polycarbonate (15) polyisobutylene (16) bulyl latex (17) co-polymer of vinyl chloride and vinyl acetate (19, 37) butyl acetate of cellulose (21) polyethylene vinyl acetate (22) polybutadiene (23) special polymer SKI-3 (24) natural latex (25) nitryl silicon latex (26) dimethyl silicon latex (27) special polymer SKS-30 (28) special polymer SKMS-50 (29) special polymer SKMS-30 (30, 34, 35) high-density, medium-densily, and low-density polyethylene (31) polyethylene with 5% soot (32) co-polymer of ethylene (90%) and propylene (10%) (33) co-polymer of ethylene (96.5%) and vinyl acetate (3.5%) (36) triacetate of cellulose (38) acetate cellulose (39) polystyrene.

See other pages where Cellulose triacetate density is mentioned: [Pg.511]    [Pg.264]    [Pg.279]    [Pg.28]    [Pg.110]    [Pg.36]    [Pg.72]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Cellulose density

Cellulose triacetate

Triacet

Triacetate

© 2024 chempedia.info