Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose acetate degradation

The cellulose molecule contains three hydroxyl groups which can react and leave the chain backbone intact. These alcohol groups can be esterified with acetic anhydride to form cellulose acetate. This polymer is spun into the fiber acetate rayon. Similarly, the alcohol groups in cellulose react with CS2 in the presence of strong base to produce cellulose xanthates. When extruded into fibers, this material is called viscose rayon, and when extruded into sheets, cellophane. In both the acetate and xanthate formation, some chain degradation also occurs, so the resulting polymer chains are shorter than those in the starting cellulose. [Pg.18]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

The earliest preparation of cellulose acetate is credited to Schiitzenberger in 1865. The method used was to heat the cotton with acetic anhydride in sealed tubes at 130-140°C. The severe reaction conditions led to a white amorphous polymer but the product would have been severely degraded and the process difficult to control. Subsequent studies made by Liebermann, Francimont, Miles, the Bayer Company and by other workers led to techniques for controlled acetylation under less severe conditions. [Pg.621]

UV absorbers have been found to be quite effective for stabilization of polymers and are very much in demand. They function by the absorption and harmless dissipation of the sunlight or UV-rich artificial radiation, which would have otherwise initiated degradation of a polymer material. Meyer and Geurhart reported, for the first time in 1945 [10], the use of UV absorber in a polymer. They found that the outdoor life of cellulose acetate film was greatly prolonged by adding phenyl salicylate (salol) [10]. After that, resorcinol monobenzoate, a much more effective absorber, was introduced in 1951 [11] for stabilization of PP, but salol continued to be the only important commercial stabilizer for several years. The 2,4-dihydroxybenzophenone was marketed in 1953, followed shortly by 2-hydroxy-4-methoxybenzophenone and other derivatives. Of the more commonly known UV absorbers, the 2-hydroxybenzophenones, 2-hy-droxy-phenyl-triazines, derivatives of phenol salicylates, its metal chelates, and hindered amine light stabilizers (HALS) are widely used in the polymer industry. [Pg.400]

Cellulose acetate 1910 Moulding and extruding materials, fibres, photographic films Degrades with hydrolysis of the acetate group and production of free acetic acid... [Pg.27]

Two commercial disazo disperse dyes of relatively simple structure were selected for a recent study of photolytic mechanisms [180]. Both dyes were found to undergo photoisomerism in dimethyl phthalate solution and in films cast from a mixture of dye and cellulose acetate. Light-induced isomerisation did not occur in polyester film dyed with the two products, however. The prolonged irradiation of Cl Disperse Yellow 23 (3.161 X = Y = H) either in solution or in the polymer matrix yielded azobenzene and various monosubstituted azobenzenes. Under similar conditions the important derivative Orange 29 (3.161 X = N02, Y = OCH3) was degraded to a mixture of p-nitroaniline and partially reduced disubstituted azobenzenes. [Pg.165]

High quality xylan diacetate is insoluble in most reagents although the acetates of degraded xylan become progressively more soluble as the molecular weight decreases. Solubility in pyridine first appears, while with further decrease in molecular size, solubility in chloroform occurs. Because of their insolubility, the acetates of undegraded xylan cause filtration difficulties when present in commercial cellulose acetates. [Pg.300]

Other blends such as polyhydroxyalkanoates (PHA) with cellulose acetate (208), PHA with polycaprolactone (209), poly(lactic acid) with poly(ethylene glycol) (210), chitosan and cellulose (211), poly(lactic acid) with inorganic fillers (212), and PHA and aliphatic polyesters with inoiganics (213) are receiving attention. The different blending compositions seem to be limited only by the number of polymers available and the compatibility of the components. The latter blends, with all natural or biodegradable components, appear to afford the best approach for future research as property balance and bio degradability is attempted. Starch and additives have been evaluated in detail from the perspective of structure and compatibility with starch (214). [Pg.482]

The observation of Blume and Swezey (5) that cellulose dissolves extremely rapidly in acetic anhydride-dimethylformamide, containing sulfuric acid catalyst, suggested that we investigate the possibilities of this reaction for hydrolyzing celluloses. The cellulose acetate formed was not degraded, whereas our purpose was complete degradation. Accordingly, the depolymerization of the cellulose derivative in solution had to be examined. [Pg.162]

Cellulose acetate was the first high-performance reverse osmosis membrane material discovered. The flux and rejection of cellulose acetate membranes have now been surpassed by interfacial composite membranes. However, cellulose acetate membranes still maintain a small fraction of the market because they are easy to make, mechanically tough, and resistant to degradation by chlorine and other oxidants, a problem with interfacial composite membranes. Cellulose acetate membranes can tolerate up to 1 ppm chlorine, so chlorination can be used to sterilize the feed water, a major advantage with feed streams having significant bacterial loading. [Pg.197]

Cellulose acetate (CA) is an important cellulose derivative, widespread as an industrially established product [25], This cellulose ester of DS < 2.5 has been reported to be degraded by microorganisms [26,27], and more recently,... [Pg.103]

Polyamide, composite membranes are very sensitive to free chlorine (recall from Chapter 4.2.1 that cellulose acetate membranes can tolerate up to 1 ppm free chlorine continuously). Degradation of the polyamide composite membrane occurs almost immediately upon exposure and can result in significant reduction in rejection after 200 and 1,000-ppm hours of exposure to free chlorine (in other words after 200-1,000 hours exposure to 1 ppm free chlorine). The rate of degradation depends on two important factors 1) degradation is more rapid at high pH than at neutral or low pH, and 2) the presence of transition metals such as iron, will catalyze the oxidation of the membrane. [Pg.136]


See other pages where Cellulose acetate degradation is mentioned: [Pg.43]    [Pg.872]    [Pg.45]    [Pg.150]    [Pg.167]    [Pg.43]    [Pg.872]    [Pg.45]    [Pg.150]    [Pg.167]    [Pg.233]    [Pg.150]    [Pg.251]    [Pg.252]    [Pg.625]    [Pg.533]    [Pg.359]    [Pg.577]    [Pg.335]    [Pg.158]    [Pg.230]    [Pg.193]    [Pg.463]    [Pg.168]    [Pg.68]    [Pg.327]    [Pg.220]    [Pg.225]    [Pg.25]    [Pg.150]    [Pg.250]    [Pg.105]    [Pg.482]    [Pg.122]    [Pg.333]    [Pg.165]    [Pg.463]    [Pg.175]    [Pg.305]    [Pg.64]    [Pg.369]    [Pg.221]   
See also in sourсe #XX -- [ Pg.177 , Pg.180 , Pg.181 , Pg.182 , Pg.183 ]

See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Cellulose acetate

Cellulose degradation

Cellulose degraded

Cellulose degrading

Cellulosics cellulose acetate

© 2024 chempedia.info