Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellular membranes, effect

Patients with acute hyperkalemia usually require other therapies to manage hyperkalemia until dialysis can be initiated. Patients who present with cardiac abnormalities caused by hyperkalemia should receive calcium gluconate or chloride (1 g intravenously) to reverse the cardiac effects. Temporary measures can be employed to shift extracellular potassium into the intracellular compartment to stabilize cellular membrane effects of excessive serum potassium levels. Such measures include the use of regular insulin (5 to 10 units intravenously) and dextrose (5% to 50% intravenously), or nebulized albuterol (10 to 20 mg). Sodium bicarbonate should not be used to shift extracellular potassium intracellularly in patients with CKD unless severe metabolic acidosis (pH less than 7.2) is present. These measures will decrease serum potassium levels within 30 to 60 minutes after treatment, but potassium must still be removed from the body. Shifting potassium to the intracellular compartment, however, decreases potassium removal by dialysis. Often, multiple dialysis sessions are required to remove potassium that is redistributed from the intracellular space back into the serum. [Pg.382]

In addition to effects on biochemical reactions, the inhibitors may influence the permeability of the various cellular membranes and through physical and chemical effects may alter the structure of other subcellular structures such as proteins, nucleic acid, and spindle fibers. Unfortunately, few definite examples can be listed. The action of colchicine and podophyllin in interfering with cell division is well known. The effect of various lactones (coumarin, parasorbic acid, and protoanemonin) on mitotic activity was discussed above. Disturbances to cytoplasmic and vacuolar structure, and the morphology of mitochondria imposed by protoanemonin, were also mentioned. Interference with protein configuration and loss of biological activity was attributed to incorporation of azetidine-2-carboxylic acid into mung bean protein in place of proline. [Pg.139]

For most tissues, cells and organs, the effects of cold on the cellular membrane are fully reversible. Cells cooled to 1 °C to 4 °C for short periods of time (about four hours) can regain normal cellular functions, including membrane-linked functions, when rewarmed. This seems to suggest that the phase transition in the membrane-bound phospholipids is reversible when the temperature is elevated to normothermia. [Pg.387]

Since some structural and dynamic features of w/o microemulsions are similar to those of cellular membranes, such as dominance of interfacial effects and coexistence of spatially separated hydrophilic and hydrophobic nanoscopic domains, the formation of nanoparticles of some inorganic salts in microemulsions could be a very simple and realistic way to model or to mimic some aspects of biomineralization processes [216,217]. [Pg.491]

Green tea consists of a wealth of simple phenolics (monomers), whereas black tea provides more complex polyphenols (dimers and polymers). It was found that with lipids the simple compounds were more effective antioxidants, while under aqueous conditions, polymers tended to have more activity. Weisburger (2001) suggested that polymers formed from a 2-5 unit polymerisation state seemed to be optimal, probably because the monomer is metabolised and excreted too rapidly, whereas the higher 6-10 unit polymers may suffer from difficulty in penetrating cellular membranes and be poorly absorbed. [Pg.140]

It is quite possible that phenolic acids may produce more than one effect on the cellular processes responsible for mineral absorption. The potential sites of action discussed above all involve cellular membranes in some way. Which mechanism of action is predominant in a given situation may depend upon the concentration of allelochemicals present and the conditions (e.g. pH) of the plant/chemical interaction. [Pg.176]

Infection of CD4+ cells commences via interaction between gp 120 and the CD4 glycoprotein, which effectively acts as the viral receptor. Entry of the virus into the cell, which appears to require some additional cellular components, occurs via endocytosis and/or fusion of the viral and cellular membranes. The gp 41 transmembrane protein plays an essential role in this process. [Pg.408]

Electrolyte imbalances alter the voltage sensitivity of muscle ion channels. While the effect of changing ionic concentrations across cellular membranes on membrane... [Pg.728]

Copper is part of several essential enzymes including tyrosinase (melanin production), dopamine beta-hydroxylase (catecholamine production), copper-zinc superoxide dismutase (free radical detoxification), and cytochrome oxidase and ceruloplasmin (iron conversion) (Aaseth and Norseth 1986). All terrestrial animals contain copper as a constituent of cytochrome c oxidase, monophenol oxidase, plasma monoamine oxidase, and copper protein complexes (Schroeder et al. 1966). Excess copper causes a variety of toxic effects, including altered permeability of cellular membranes. The primary target for free cupric ions in the cellular membranes are thiol groups that reduce cupric (Cu+2) to cuprous (Cu+1) upon simultaneous oxidation to disulfides in the membrane. Cuprous ions are reoxidized to Cu+2 in the presence of molecular oxygen molecular oxygen is thereby converted to the toxic superoxide radical O2, which induces lipoperoxidation (Aaseth and Norseth 1986). [Pg.133]

Investigations of the cellular effects of radiofrequency radiation provide evidence of damage to various types of avian and mammalian cells. These effects involve radiofrequency interactions with cell membranes, especially the plasma membrane. Effects include alterations in membrane cation transport, Na+/K+-ATPase activity, protein kinase activity, neutrophil precursor membrane receptors, firing rates and resting potentials of neurons, brain cell metabolism, DNA and RNA synthesis in glioma cells, and mitogenic effects on human lymphocytes (Cleary 1990). [Pg.1699]

The commercial availability of certain toxin standards has allowed researchers to examine the physiological mechanisms of allelopathy by cyanobacteria. The best known examples are from studies on microcystins, which affect plants and aquatic algae by interfering with protein phosphatases in a manner similar to their effect on vertebrate enzymes (Babica et al. 2006). However, there is evidence that microcystins can also promote the formation of reactive oxygen species (ROS) in photoautotrophs, which can cause extensive damage to cellular membranes and enzymes (Babica et al. 2006 Leflaive and Ten-Hage 2007). [Pg.113]

There is reason to beheve that cardiac glycosides, like other inotropic substances, act on the contractibility of the heart by affecting the process of calcium ion transfer through the membrane of myocardiocytes. The effect of cellular membranes in electric conductivity is mediated by transport of sodium, calcium, and potassium ions, which is a result of indirect inhibitor action on the (Na+-K+) ATPase of cell membranes. [Pg.238]


See other pages where Cellular membranes, effect is mentioned: [Pg.383]    [Pg.35]    [Pg.383]    [Pg.35]    [Pg.2584]    [Pg.497]    [Pg.258]    [Pg.387]    [Pg.421]    [Pg.425]    [Pg.426]    [Pg.277]    [Pg.805]    [Pg.97]    [Pg.126]    [Pg.327]    [Pg.298]    [Pg.232]    [Pg.9]    [Pg.122]    [Pg.51]    [Pg.253]    [Pg.195]    [Pg.104]    [Pg.169]    [Pg.187]    [Pg.302]    [Pg.382]    [Pg.176]    [Pg.127]    [Pg.349]    [Pg.113]    [Pg.81]    [Pg.85]    [Pg.195]    [Pg.191]    [Pg.194]    [Pg.248]    [Pg.489]   


SEARCH



Cellular Effects

Membrane effects

Membranes cellular

© 2024 chempedia.info