Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cells iodination

Distribution of I in Line-10 Tumor Cells Iodinated IN A Lactoperoxidase (LPO)-Catalyzed Reaction"... [Pg.262]

United Nations to alleviate iodine deficiency. Iodine is required for the thyroid hormones, thyroxine and triiodothyronine, that regulate the metabohc rate and O2 consumption of cells. Iodine is also intimately involved in the control of growth and development, particularly during fetal and infant life. [Pg.926]

The expression of the sodium iodide symporter is perhaps nowhere more important than in the thyroid gland. A complete review of the physiological importance of the thyroid is beyond the scope of this chapter. It is sufficient to say that the symporter provides the iodine needed for normal thyroid function. Once the symporter has been trafficked to the basolateral surface of the thyrocyte, it can transport iodine from the blood into the cell. Once inside the cells, iodine is transported to the apical membrane where it is organified through attachment to a tyrosine residue and incorporated into the thyroid hormone thyroglobulin. The thyroglobu-lin is then stored inside thyroid follicles as colloid, to be released into the bloodstream as thyroid hormones (thyroxine and triiodothyronine) via TSH stimulation. [Pg.210]

Iodine deficiency remains a major cause of mental retardation and infant mortality and morbidity worldwide—even though iodine was shown to be essential for human health nearly 100 years ago. More than 1 billion people are believed to be at risk for iodine deficiency. In 1986, the International Council for the Control of Iodine Deficiency Disorders was established in an effort to improve iodine nutrition and alleviate human suffering. This council works closely with the World Health Organization, the United Nations International Children s Fund, and the United Nations to alleviate iodine deficiency. Iodine is required for the thyroid hormones, thyroxine and triiodothyronine, that regulate the metabolic rate and O2 consumption of cells. Iodine is also intimately involved in the control of growth and development, particularly during fetal and infant life. [Pg.1038]

Physical Properties. The absorption of x-rays by iodine has been studied and the iodine crystal stmcture deterrnined (12,13). Iodine crystallizes in the orthorhombic system and has a unit cell of eight atoms arranged as a symmetrical bipyramid. The cell constants at 18°C (14) are given in Table 1, along with other physical properties. Prom the interatomic distances of many iodine compounds, the calculated effective radius of the covalently bound iodine atom is 184 pm (15). [Pg.358]

Up to 0.4 g/L of the iodine stays in solution and the rest precipitates as crystallized iodine, which is removed by flotation (qv). This operation does not require a flotation agent, owing to the hydrophobic character of the crystallized element. From the flotation cell a heavy pulp, which is water-washed and submitted to a second flotation step, is obtained. The washed pulp is introduced into a heat exchanger where it is heated under pressure up to 120°C to melt the iodine that flows into a first reactor for decantation. From there the melt flows into a second reactor for sulfuric acid drying. The refined iodine is either flaked or prilled, and packed in 50- and 25-kg plastic-lined fiber dmms. [Pg.361]

The solution leaving the flotation cell, containing about 0.4 g/L iodine, is sent to a kerosene solvent extraction process to recover the dissolved product. After neutralization with soda ash to the initial incoming alkalinity, the solution is returned to the nitrate lixiviation process. The iodine-chaiged kerosene is contacted with an acidic concentrated iodide solution containing SO2, which reduces the iodine to iodide. [Pg.362]

Iodine cataly2es the conversion of amorphous selenium to the black, semiconducting metallic modification, and is used for this purpose in the manufacture of photoelectric cells and electric rectifiers (see Seleniumand selenium compounds). [Pg.367]

Metabolic Functions. The functions of the thyroid hormones and thus of iodine are control of energy transductions (121). These hormones increase oxygen consumption and basal metaboHc rate by accelerating reactions in nearly all cells of the body. A part of this effect is attributed to increase in activity of many enzymes. Additionally, protein synthesis is affected by the thyroid hormones (121,122). [Pg.386]

There should be specific, saturable binding to the receptor, accompanied by pharmacological characteristics appropriate to the functional effects, demonstrable using a radioactive, eg, tritium or iodine-125, ligand to label the receptor. Radioligand binding assays (1,6) have become a significant means by which to identify and characterize receptors and enzymes (see Immunoassays Radioactive tracers). Isolation of the receptor or expression of the receptor in another cell, eg, an oocyte can be used to confirm the existence of a discrete entity. [Pg.517]

The cathodic reaction is the reduction of iodine to form lithium iodide at the carbon collector sites as lithium ions diffuse to the reaction site. The anode reaction is lithium ion formation and diffusion through the thin lithium iodide electrolyte layer. If the anode is cormgated and coated with PVP prior to adding the cathode fluid, the impedance of the cell is lower and remains at a low level until late in the discharge. The cell eventually fails because of high resistance, even though the drain rate is low. [Pg.535]

A large reserve of caUche ore bearing iodine is being processed in the Atacama Desert. Production of iodine there is relatively inexpensive. About 40% of the world supply of iodine is made from these Chilean deposits. The process consists of leaching the caUche with water. Brine is stripped of iodine using an organic solvent. The iodine is then removed from the solvent to form a slurry. SoHd-phase iodine is separated from the slurry in conventional flotation cells, dried, and packaged. Details of the process are proprietary. [Pg.411]

Leclanche or dry cell Alkaline Cell Silver-Zinc Reuben Cell Zinc-Air Fuel Cell Lithium Iodine Lithium-Sulfur Dioxide Lithium-Thionyl Chloride Lithium-Manganese Dioxide Lithium-Carbon Monofluoride... [Pg.233]

Follow die directions for Question 7 for a salt bridge cell in which die anode is a platinum rod immersed in an aqueous solution of sodium iodide containing solid iodine crystals. The cathode is another platinum rod immersed in an aqueous solution of sodium bromide with bromine liquid. [Pg.506]

Repeated attempts to obtain the band at 1030 cm 1 in spectra of the respective solids of various compositions did not furnish the desired result. Nevertheless, the band was observed in IR transmission spectra of gaseous components that separated from molten K2NbF7 and were collected in a standard gas phase cell with Csl windows appropriate for IR measurements. Fig. 85 presents the structure of the band and exact wave numbers of its components. Storage of the gas in the cell for several days resulted in a yellow deposit on the windows due to oxidation and subsequent separation of iodine. Analysis of available reported data [364 - 367] enables to assign the band observed at -1030 cm 1 to vibrations of OF radicals. It should be emphasized that a single mode was observed for OF in the argon matrix while in the case of nitrogen, two modes were indicated [367]. [Pg.190]


See other pages where Cells iodination is mentioned: [Pg.535]    [Pg.262]    [Pg.251]    [Pg.853]    [Pg.535]    [Pg.160]    [Pg.262]    [Pg.262]    [Pg.535]    [Pg.262]    [Pg.251]    [Pg.853]    [Pg.535]    [Pg.160]    [Pg.262]    [Pg.262]    [Pg.398]    [Pg.285]    [Pg.574]    [Pg.502]    [Pg.32]    [Pg.236]    [Pg.373]    [Pg.386]    [Pg.503]    [Pg.462]    [Pg.50]    [Pg.50]    [Pg.403]    [Pg.533]    [Pg.535]    [Pg.537]    [Pg.86]    [Pg.263]    [Pg.12]    [Pg.98]    [Pg.516]    [Pg.525]    [Pg.384]    [Pg.385]    [Pg.536]    [Pg.540]   
See also in sourсe #XX -- [ Pg.554 ]




SEARCH



Cell voltage lithium iodine

Lithium-iodine cells

Lithium/iodine primary cells

Silver-iodine cells

Thyroid cells iodine uptake

© 2024 chempedia.info