Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cavitation surface tension

The choice of the solvent also has a profound influence on the observed sonochemistry. The effect of vapor pressure has already been mentioned. Other Hquid properties, such as surface tension and viscosity, wiU alter the threshold of cavitation, but this is generaUy a minor concern. The chemical reactivity of the solvent is often much more important. No solvent is inert under the high temperature conditions of cavitation (50). One may minimize this problem, however, by using robust solvents that have low vapor pressures so as to minimize their concentration in the vapor phase of the cavitation event. Alternatively, one may wish to take advantage of such secondary reactions, for example, by using halocarbons for sonochemical halogenations. With ultrasonic irradiations in water, the observed aqueous sonochemistry is dominated by secondary reactions of OH- and H- formed from the sonolysis of water vapor in the cavitation zone (51—53). [Pg.262]

Cavitation and Flashing From the discussion on pressure recoveiy it was seen that the pressure at the vena contracta can be much lower than the downstream pressure. If the pressure on a hquid falls below its vapor pressure (p,J, the liquid will vaporize. Due to the effect of surface tension, this vapor phase will first appear as bubbles. These bubbles are carried downstream with the flow, where they collapse if the pressure recovers to a value above p,. This pressure-driven process of vapor-bubble formation and collapse is known as cavitation. [Pg.789]

The important liquid phase physicochemical properties which affect the cavitation phenomena and hence the extent of cavitational effects for the given application include vapor pressure, viscosity and surface tension. [Pg.54]

Thus, ultrasound and surface active agents together help in reducing the aggregation of particles because of the fact that the bonds between them are extended due to cavitation. Additives inhibit the agglomeration during nucleation process by reducing the surface tension. Ultrasound and additives both reduce population of local nuclei hence reduction in particle size [43]. [Pg.181]

Choice of liquid Vapor pressure Surface tension Viscosity Chemical reactivity Intensity of collapse Transient cavitation threshold Transient cavitation threshold Primary or secondary sonochemistry... [Pg.88]

There are three popular ways to treat the nonelectrostatic effects (i) ignore them, (ii) combine specialized models for cavitation, dispersion, exchange repulsion, and so forth,46 48 70 (iii) employ atomic surface tensions.12 27, 83 86 In the third approach, which is the most accurate in an empirical sense, one writes22 27... [Pg.84]

The final factor to be considered here, and known to affect the cavitation threshold, is the temperature. In general, the threshold limit has been found to increase with decrease in temperature. This may in part be due to increases in either the surface tension (a) or viscosity (rj) of the liquid as the temperature decreases, or it may be due to the decreases in the liquid vapour pressure (P ). To best understand how these parameters (a, q, Py) affect the cavitation threshold, let us consider an isolated bubble, of radius Rq, in water at a hydrostatic pressure (Pjj) of 1 atm. [Pg.42]

For water the surface tension varies with temperature as shown in Fig. 2.13 - i. e. a lowering of surface tension with increase in temperature. If it can be assumed that P, remains constant vdth increase in temperature then there will be a small increase in P and a lowering of the intensity (P ) necessary to cause cavitation. Obviously P, does not remain constant vdth increase in temperature but increases quite rapidly. Consequently there is a rapid rise in P with increase in temperature and the threshold decreases accordingly. The corollary is that liquids with high vapour pressures or low surface tensions cavitate at a lower intensity. [Pg.43]

Transient cavitation bubbles are voids, or vapour filled bubbles, believed to be produced using sound intensities in excess of 10 W cm. They exist for one, or at most a few acoustic cycles, expanding to a radius of at least twice their initial size, (Figs. 2.16 and 2.20), before collapsing violently on compression often disintegrating into smaller bubbles. (These smaller bubbles may act as nuclei for further bubbles, or if of sufficiently small radius (R) they can simply dissolve into the bulk of the solution under the action of the very large forces due to surface tension, 2a/R. During the lifetime of the transient bubble it is assumed that there is no time for any mass flow, by diffusion of gas, into or out of the bubble, whereas evaporation and condensation of liquid is assumed to take place freely. If there is no gas to cushion the implosion... [Pg.53]

Whilst vapour pressure may be the major solvent factor involved in the degradation process, there could also be a contribution from solvent viscosity or even, yet less likely, from surface tension. It has already been argued (see Section 2.6.2) that although an increase in viscosity raises the cavitation threshold, (i. e. makes cavitation more difficult), provided cavitation occurs, the pressure effects resulting from bubble collapse... [Pg.172]

MSE.I8. I. Prigogine, The molecular theory of surface tension, in Cavitation in Real liquids, R. Davies, ed., Elsevier, Amsterdam, 1964, pp. I47-I63. [Pg.52]

Colloidal potassium has recently been proved as a more active reducer than the metal that has been conventionally powdered by shaking it in hot octane (Luche et al. 1984, Chou and You 1987, Wang et al. 1994). To prepare colloidal potassium, a piece of this metal in dry toluene or xylene under an argon atmosphere is submitted to ultrasonic irradiation at ca. 10°C. A silvery blue color rapidly develops, and in a few minutes the metal disappears. A common cleaning bath (e.g., Sono-clean, 35 kHz) filled with water and crushed ice can be used. A very fine suspension of potassium is thus obtained, which settles very slowly on standing. The same method did not work in THF (Luche et al. 1984). Ultrasonic waves interact with the metal by their cavitational effects. These effects are closely related to the physical constants of the medium, such as vapor pressure, viscosity, and surface tension (Sehgal et al. 1982). All of these factors have to be taken into account when one chooses a metal to be ultrasonically dispersed in a given solvent. [Pg.87]

Besides small gas bubbles, other nucleation sites (e.g., at minute dust particles) may give rise to the cavitation phenomenon. Normally, the surface tension of water is too high to allow the formation of water vapor bubbles at the relatively small negative pressures created by the sonic field. However, at the surface of the dust particles the surface tension of water may be sufficiently low to create a water vapor bubble in the sonic field and thus start the cavitation process. [Pg.14]

From such microbubble-dissolution measurements, Bemd (ref. 16,17) outlined a physical model to explain much of the dynamic behavior of film-stabilized microbubbles.- One problematic aspect of this dynamic behavior involved the question of how a gas nucleus can be surrounded by a relatively impermeable film and yet subsequently act to produce cavitation when a gas/water interface is needed to initiate cavitation. Bernd (ref. 16) explains that if the stabilized gas microbubble enters a low-pressure area, the gas within the microbubble will attempt to expand. The surfactant film may also elastically attempt to expand. The surfactant film will then be expanded until essentially the surface tension of the water alone acts to contract the microbubble, since the protective shell no longer acts. The film has either been ruptured upon expansion, or it has expanded until it is ineffectual. Thus the microbubble (i.e., gas nucleus) should be capable of expanding to form a cavitation void or acquire additional gas in the form of water vapor or from surrounding dissolved gas. In addition, Bernd points out that it is reasonable to expect a gas microbubble to acquire such an effective... [Pg.21]

Pratt and co-workers have proposed a quasichemical theory [118-122] in which the solvent is partitioned into inner-shell and outer-shell domains with the outer shell treated by a continuum electrostatic method. The cluster-continuum model, mixed discrete-continuum models, and the quasichemical theory are essentially three different names for the same approach to the problem [123], The quasichemical theory, the cluster-continuum model, other mixed discrete-continuum approaches, and the use of geometry-dependent atomic surface tensions provide different ways to account for the fact that the solvent does not retain its bulk properties right up to the solute-solvent boundary. Experience has shown that deviations from bulk behavior are mainly localized in the first solvation shell. Although these first-solvation-shell effects are sometimes classified into cavitation energy, dispersion, hydrophobic effects, hydrogen bonding, repulsion, and so forth, they clearly must also include the fact that the local dielectric constant (to the extent that such a quantity may even be defined) of the solvent is different near the solute than in the bulk (or near a different kind of solute or near a different part of the same solute). Furthermore... [Pg.349]

Because no known material can remain indefinitely undamaged by severe cavitation, the only sure solution is to eliminate it. The greatest damage is caused by a dense pure liquid with high surface tension (e.g., water or mercury). Methods to eliminate cavitation include the reduction... [Pg.233]

For the same reason as above, excess solvent molecules in the cavitation bubble also seriously limit the applicability of many volatile organic solvents as a medium for sonochemical reactions [2,25,26]. In fact, water becomes a unique solvent in many cases, combining its low vapor pressure, high surface tension, and viscosity with a high yield of active radical output in solution. Its higher cavitation threshold results in subsequently higher final temperatures and pressures upon bubble collapse. Most environmental remediation problems deal with aqueous solutions, whereas organic solvents are mostly used in synthesis and polymer modifications processes. [Pg.216]


See other pages where Cavitation surface tension is mentioned: [Pg.1055]    [Pg.6]    [Pg.6]    [Pg.17]    [Pg.54]    [Pg.365]    [Pg.78]    [Pg.29]    [Pg.168]    [Pg.155]    [Pg.43]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.337]    [Pg.216]    [Pg.137]    [Pg.127]    [Pg.565]    [Pg.122]    [Pg.123]    [Pg.107]    [Pg.14]    [Pg.15]    [Pg.19]    [Pg.199]    [Pg.203]    [Pg.526]    [Pg.422]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Cavitated

Cavitates

Cavitation

Cavitations

© 2024 chempedia.info