Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

First-solvation-shell effects

Chambers C C, G D Hawkins, C J Cramer and D G Tmlilar 1996. Model for Aqueous Solvation Ba sed on Class IC Atomic Charges and First Solvation Shell Effects. Journal of Physical Chemistry 100 16385-16398. [Pg.650]

Finally we address the issue of contributions. In our view it is unbalanced to concentrate on a converged treatment of electrostatics but to ignore other effects. As discussed in section 2.2, first-solvation-shell effects may be included in continuum models in terms of surface tensions. An alternative way to try to include some of them is by scaled particle theory and/or by some ab initio theory... [Pg.28]

It is evident that continuum models can be quite effective, for ionic solutes as well as for neutral ones. They also have the advantage of not being highly demanding in terms of computer resources. However a problem associated with these methods is posed by so-called first-solvation-shell effects 6 One aspect of this is the difficulty of properly accounting for specific types of solute-... [Pg.55]

The level of accuracy that can be achieved by these different methods may be viewed as somewhat remarkable, given the approximations that are involved. For relatively small organic molecules, for instance, the calculated AGsoivation is now usually within less than 1 kcal/mole of the experimental value, often considerably less. Appropriate parametrization is of key importance. Applications to biological systems pose greater problems, due to the size and complexity of the molecules,66 156 159 161 and require the use of semiempirical rather than ab initio quantum-mechanical methods. In terms of computational expense, continuum models have the advantage over discrete molecular ones, but the latter are better able to describe solvent structure and handle first-solvation-shell effects. [Pg.59]

Having identified the strongest points of the explicit and implicit solvent models, it seems an obvious step to try to combine them in a way that takes advantage of the strengths of each. For instance, to the extent first-solvation-shell effects are qualitatively different from those deriving from the bulk, one might choose to include the first solvation shell explicitly and model the remainder of the system with a continuum (see, for instance, Chahnet, Rinaldi, and Ruiz-Lopez, 2001). [Pg.451]

So, while there is growing interest in hybrid models of all sorts (as discussed in more detail in the next chapter), the choice of a mixed solvent model is not necessarily intrinsically better than a pure explicit or pure implicit model. In general, unless there is a strong suspicion that first-solvation-shell effects are drastically different from those more typically encountered, there is no particularly compelling reason to pursue a mixed modeling strategy. An example... [Pg.451]

Pratt and co-workers have proposed a quasichemical theory [118-122] in which the solvent is partitioned into inner-shell and outer-shell domains with the outer shell treated by a continuum electrostatic method. The cluster-continuum model, mixed discrete-continuum models, and the quasichemical theory are essentially three different names for the same approach to the problem [123], The quasichemical theory, the cluster-continuum model, other mixed discrete-continuum approaches, and the use of geometry-dependent atomic surface tensions provide different ways to account for the fact that the solvent does not retain its bulk properties right up to the solute-solvent boundary. Experience has shown that deviations from bulk behavior are mainly localized in the first solvation shell. Although these first-solvation-shell effects are sometimes classified into cavitation energy, dispersion, hydrophobic effects, hydrogen bonding, repulsion, and so forth, they clearly must also include the fact that the local dielectric constant (to the extent that such a quantity may even be defined) of the solvent is different near the solute than in the bulk (or near a different kind of solute or near a different part of the same solute). Furthermore... [Pg.349]

Models for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects. [Pg.30]

Chambers, C.C., Hawkins, G.D., Cramer, C.J., Truhlar, D.G. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J. Phys. Chem. 1996,100(40), 16385-98. [Pg.138]

J. R. Pliego,/. Phys. Chem. B, 113,505 (2009). First Solvation Shell Effects on Ionic Chemical Reactions New Insights for Supramolecular Catalysis. [Pg.312]

The term Gcds accounts for the first-solvation-shell effects and is given... [Pg.204]


See other pages where First-solvation-shell effects is mentioned: [Pg.90]    [Pg.18]    [Pg.29]    [Pg.37]    [Pg.74]    [Pg.137]    [Pg.112]    [Pg.175]    [Pg.349]    [Pg.54]    [Pg.90]    [Pg.736]    [Pg.347]   
See also in sourсe #XX -- [ Pg.175 , Pg.350 , Pg.351 ]




SEARCH



First effect

First solvation shell

Shell effects

Solvate effects

Solvate shell

Solvated first solvation shell

Solvating effect

Solvation shell

© 2024 chempedia.info