Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Caustic fluorides

Acids Caustics Fluorides Abrasion Thermal shock... [Pg.182]

In the presence of excess caustic, the oxygen difluoride is gradually reduced to oxygen and fluoride ... [Pg.124]

Disposal. Fluorine can be disposed of by conversion to gaseous perfluorocarbons or fluoride salts. Because of the long atmospheric lifetimes of gaseous perfluorocarbons (see Atmospheric models), disposal by conversion to fluoride salts is preferred. The following methods are recommended scmbbing with caustic solutions (115,116) reaction with soHd disposal agents such as alumina, limestone, lime, and soda lime (117,118) and reaction with superheated steam (119). Scmbbing with caustic solution and, for dilute streams, reaction with limestone, are practiced on an industrial scale. [Pg.131]

In a caustic scmbbing system, caustic potash, KOH, is preferred to caustic soda, NaOH, because of the higher solubiUty of the resulting potassium fluoride. Adequate solution contact and residence time must be provided in the scmb tower to ensure complete neutralization of the intermediate oxygen difluoride, OF2. Gas residence times of at least one minute and caustic concentrations in excess of 5% are recommended to prevent OF2 emission from the scmb tower. [Pg.131]

Disposal. Moderate amounts of chlorine ttifluoride or other halogen fluorides may be destroyed by burning with a fuel such as natural gas, hydrogen, or propane. The resulting fumes may be vented to water or caustic scmbbers. Alternatively, they can be diluted with an inert gas and scmbbed in a caustic solution. Further information on disposal of halogen fluorides is available (115—118). [Pg.187]

Sodium fluoride is normally manufactured by the reaction of hydrofluoric acid and soda ash (sodium carbonate), or caustic soda (sodium hydroxide). Control of pH is essential and proper agitation necessary to obtain the desired crystal size. The crystals are centrifuged, dried, sized, and packaged. Reactors are usually constmcted of carbon brick and lead-lined steel, with process lines of stainless, plastic or plastic-lined steel diaphragm, plug cock, or butterfly valves are preferred. [Pg.237]

Acid-cataly2ed hydroxylation of naphthalene with 90% hydrogen peroxide gives either 1-naphthol or 2-naphthiol at a 98% yield, depending on the acidity of the system and the solvent used. In anhydrous hydrogen fluoride or 70% HF—30% pyridine solution at — 10 to + 20°C, 1-naphthol is the product formed in > 98% selectivity. In contrast, 2-naphthol is obtained in hydroxylation in super acid (HF—BF, HF—SbF, HF—TaF, FSO H—SbF ) solution at — 60 to — 78°C in > 98% selectivity (57). Of the three commercial methods of manufacture, the pressure hydrolysis of 1-naphthaleneamine with aqueous sulfuric acid at 180°C has been abandoned, at least in the United States. The caustic fusion of sodium 1-naphthalenesulfonate with 50 wt % aqueous sodium hydroxide at ca 290°C followed by the neutralization gives 1-naphthalenol in a ca 90% yield. [Pg.497]

Titanium corrodes very rapidly in acid fluoride environments. It is attacked in boiling HCl or H2SO4 at acid concentrations of >1% or in ca 10 wt % acid concentration at room temperature. Titanium is also attacked by hot caustic solutions, phosphoric acid solutions (concentrations >25 wt%), boiling AlCl (concentrations >10 wt %), dry chlorine gas, anhydrous ammonia above 150°C, and dry hydrogen—dihydrogen sulfide above 150°C. [Pg.104]

Porous carbon and graphite are used ia filtration of hydrogen fluoride streams, caustic solutions, and molten sodium cyanide ia diffusion of chlorine iato molten aluminum to produce aluminum chloride and ia aeration of waste sulfite Hquors from pulp and paper manufacture and sewage streams. [Pg.516]

Heavy metals on or in vegetation and water have been and continue to be toxic to animals and fish. Arsenic and lead from smelters, molybdenum from steel plants, and mercury from chlorine-caustic plants are major offenders. Poisoning of aquatic life by mercury is relatively new, whereas the toxic effects of the other metals have been largely eliminated by proper control of industrial emissions. Gaseous (and particulate) fluorides have caused injury and damage to a wide variety of animals—domestic and wild—as well as to fish. Accidental effects resulting from insecticides and nerve gas have been reported. [Pg.121]

Chemical Reactivity - Reactivity with Water Reacts vigorously to form toxic hydrogen fluoride (hydrofluoric acid) Reactivity with Common Materials When moisture is present, causes severe corrosion of metals (except steel) and glass. If confined and wet can cause explosion. May cause fire in contact with combustible material Stability During Transport Stable Neutralizing Agents for Acids and Caustics Flush with water, rinse with sodium bicarbonate or lime solution Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.26]

Are caustic materials processed If these are released and contact people either as a vapor or liquid severe health hazards result. For example, uranyl fluoride forms hydrofluoric acid in the lungs. [Pg.293]

Considerable heat evolves when anltydrous hydrogen fluoride or concentrated hydrofluoric acid is diluted with water. Violent reactions can result from the inappropriate addition of water or caustic solutions to llicse materials. [Pg.271]

Selective removal of the less noble constituent has been demonstrated by chemical analysis in the case of nickel-rich alloys in fused caustic soda or fused fluorides ", and by etching effects and X-ray microanalysis for Fe-18Cr-8Ni steels in fused alkali chlorides. This type of excessive damage can occur with quite small total amounts of corrosion, and in this sense its effect on the mechanical properties of the alloy is comparable with the notorious effect of intercrystalline disintegration in the stainless steels. [Pg.440]

Fluoride anodising treatment Caustic soda clean... [Pg.754]

A large number of electrolytic treatments of magnesium, anodic or a.c., have been developed, in which adherent white or grey films consisting of fluoride, oxide, hydroxide, aluminate or basic carbonate are deposited from alkaline solutions containing caustic alkali, alkali carbonates, phosphates, pyrophosphates, cyanides, aluminates, oxalates, silicates, borates, etc. Some films are thin, and some are relatively thick. All are more or less absorbent and act as good bases for paint, though none contributes appreciable inhibition. All can, however, absorb chromates with consequent improvement of protective efficiency. [Pg.729]

Inorganic chemicals and fertilizers include acids (e.g., sulfuric, nitric) and alkalies (e.g., caustic soda, soda ash), chlorine, ammonia, and ammonia-derived fertilizers. They also include fluorine derivatives (e.g., hydrogen fluoride), phosphates, potash, pigments (e.g., titanium dioxide), and certain metals such as mercury. [Pg.50]

After appropriate dilutions, samples collected for concentration determinations were analysed using the sodium gluconate - potassium fluoride method on a dosimate-titrator (Kirke, E.A., Alcoa of Australia, Kwinana, personal communication, 1986). Total alkaline, totd caustic and alumina concentrations were determined using this method. [Pg.333]

Natural barium sulfate or barite is widely distributed in nature. It also contains silica, ferric oxide and fluoride impurities. Silica is the prime impurity which may be removed as sodium fluorosilicate by treatment with hydrofluoric acid followed by caustic soda. [Pg.92]

Fluorination with fluorine produces copper(ll) fluoride, CuF2. Adding potassium ferrocyanide to CuCb aqueous solution precipitates out reddish brown cupric ferrocyanide. Reaction with caustic soda forms blue cupric... [Pg.263]

Sodium fluoride is prepared by adding sodium hydroxide or sodium carbonate to a 40% solution of hydrofluoric acid. In excess hydrofluoric acid, sodium bifluoride, NaHF2, is formed. NaF also is made by fusion of cryohte with caustic soda. Technical grade products are usually sold at 90 to 95% purity. [Pg.865]

Tantalum can be separated from niobium by recrystallization of the double potassium fluorides. In the commercial process the ore is fused with caustic soda. The insoluble sodium niobate, sodium tantalate, and... [Pg.351]


See other pages where Caustic fluorides is mentioned: [Pg.486]    [Pg.128]    [Pg.242]    [Pg.316]    [Pg.543]    [Pg.294]    [Pg.180]    [Pg.36]    [Pg.106]    [Pg.54]    [Pg.84]    [Pg.184]    [Pg.21]    [Pg.757]    [Pg.612]    [Pg.104]    [Pg.28]    [Pg.52]    [Pg.909]    [Pg.370]    [Pg.286]    [Pg.287]    [Pg.292]    [Pg.297]    [Pg.305]    [Pg.308]    [Pg.308]    [Pg.315]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Causticity

Causticization

© 2024 chempedia.info