Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic surfactant examples

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

Cationic, anionic, and amphoteric surfactants derive thek water solubiUty from thek ionic charge, whereas the nonionic hydrophile derives its water solubihty from highly polar terminal hydroxyl groups. Cationic surfactants perform well in polar substrates like styrenics and polyurethane. Examples of cationic surfactants ate quaternary ammonium chlorides, quaternary ammonium methosulfates, and quaternary ammonium nitrates (see QuARTERNARY AMMONIUM compounds). Anionic surfactants work well in PVC and styrenics. Examples of anionic surfactants ate fatty phosphate esters and alkyl sulfonates. [Pg.297]

Electrochemical analytical techniques are a class of titration methods which in turn can be subdivided into potentiometric titrations using ion-selective electrodes and polarographic methods. Polarographic methods are based on the suppression of the overpotential associated with oxygen or other species in the polarographic cell caused by surfactants or on the effect of surfactants on the capacitance of the electrode. One example of this latter case is the method based on the interference of anionic surfactants with cationic surfactants, or vice versa, on the capacitance of a mercury drop electrode. This interference can be used in the one-phase titration of sulfates without indicator to determine the endpoint... [Pg.281]

Subsequently, cationic rhodium catalysts are also found to be effective for the regio- and stereoselective hydrosilation of alkynes in aqueous media. Recently, Oshima et al. reported a rhodium-catalyzed hydrosilylation of alkynes in an aqueous micellar system. A combination of [RhCl(nbd)]2 and bis-(diphenylphosphi no)propanc (dppp) were shown to be effective for the ( >selective hydrosilation in the presence of sodium dodecylsulfate (SDS), an anionic surfactant, in water.86 An anionic surfactant is essential for this ( )-selective hydrosilation, possibly because anionic micelles are helpful for the formation of a cationic rhodium species via dissociation of the Rh-Cl bond. For example, Triton X-100, a neutral surfactant, gave nonstereoselective hydrosilation whereas methyltrioctylammonium chloride, a cationic surfactant, resulted in none of the hydrosilation products. It was also found that the selectivity can be switched from E to Z in the presence of sodium iodide (Eq. 4.47). [Pg.122]

As surfactants are often used in textile processing, it is important to note that anionic or cationic surfactants can inhibit the action of enzymes, as has been reported in the case of cellulases used for the treatment of cotton [140]. Dyes can also inhibit enzyme activity for example, Cl Direct Red 28 has been shown to have a much greater inhibitory effect than Cl Acid Orange 7 [141]. [Pg.89]

There have been many recent studies in support of this mechanistic approach. Stepwise reductive formation of Ag3+ and Ag4+ clusters has been followed using spectroscopic methods by Henglein [33], Reduction of copper (II) to colloidal Cu protected by cationic surfactants (NR4+) through the intermediate Cu+ prior to nucleation of the particles [36] as monitored by in situ x-ray absorption spectroscopy is another example. The seed-mediated synthesis also serves as evidence in support of this mechanism [38-41],... [Pg.64]

The third industrial blend presented here as an example belongs to the cationic surfactants of fatty acid polyglycol amine type with... [Pg.165]

Various classes of cationic surfactants, including quats, esterquats, alkyl ethoxy amines, quaternary perfluoroalkyl ammoniums and gemini surfactants have been analysed extensively with LC—MS and LC—MS—MS techniques, and their spectra have been fully characterised. Different ionisation methods have been applied for the detection of such surfactants, including API techniques (APCI and ESI) in negative and positive modes of operation. In addition, detailed examples regarding MS—MS fragmentation of these compounds have been reported and presented in this chapter. [Pg.409]

Literature on reactions involving micellar counterions is particularly rich and for good reasons. The local concentration of counterions in the micellar Stern region is extremely high compared to typical aqueous solutions. As a result, bimolecular reactions involving bases such as hydroxide and acetate or oxidants such as perchlorate can be accelerated significantly by using these as a counterion for cationic surfactants. Discussion here will be restricted to a selected number of relatively recent examples of particular interest. This should not, however, distract from the merit of many of the other publications in this field. [Pg.26]

Ion pair extraction provides a standard method for estimating ionic surfactants either colorometrically or titrimetrically. For example a cationic surfactant such as cetrimide can be estimated by pairing it with a lipophilic anionic dye such as bromocresol purple. The ion pairing creates a coloured lipophilic ion pair, which can be extracted into an organic solvent such as chloroform and a quantitative measurement of the colour extracted can be made spectrophotometrically. This type of assay is described in the BP for Clonidine Injection and Benzhexol Tablets. [Pg.317]

The common gangue material quartz (silica) is naturally hydrophilic and can be easily separated in this way from hydrophobic materials such as talc, molybdenite, metal sulphides and some types of coal. Minerals which are hydrophilic can usually be made hydrophobic by adding surfactant (referred to as an activator ) to the solution which selectively adsorbs on the required grains. For example, cationic surfactants (e.g. CTAB) will adsorb onto most negatively charged surfaces whereas anionic surfactants (e.g. SDS) will not. Optimum flotation conditions are usually obtained by experiment using a model test cell called a Hallimond tube . In addition to activator compounds, frothers which are also surfactants are added to stabilize the foam produced at the top of the flotation chamber. Mixtures of non-ionic and ionic surfactant molecules make the best frothers. As examples of the remarkable efficiency of the process, only 45 g of collector and 35 g of frother are required to float 1 ton of quartz and only 30 g of collector will separate 3 tons of sulphide ore. [Pg.159]


See other pages where Cationic surfactant examples is mentioned: [Pg.2576]    [Pg.450]    [Pg.70]    [Pg.172]    [Pg.137]    [Pg.294]    [Pg.455]    [Pg.480]    [Pg.269]    [Pg.256]    [Pg.14]    [Pg.23]    [Pg.57]    [Pg.229]    [Pg.279]    [Pg.118]    [Pg.613]    [Pg.134]    [Pg.39]    [Pg.382]    [Pg.384]    [Pg.253]    [Pg.479]    [Pg.451]    [Pg.105]    [Pg.21]    [Pg.228]    [Pg.94]    [Pg.13]    [Pg.21]    [Pg.27]    [Pg.87]    [Pg.160]    [Pg.14]    [Pg.184]    [Pg.241]    [Pg.44]    [Pg.57]    [Pg.70]    [Pg.151]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Surfactant examples

© 2024 chempedia.info