Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathodic reinforcement

The chloride ion itself is negative and will be repelled by the negatively charged cathode (reinforcing steel). It will move towards the (new external) anode. With the carbon-based anodes it may then combine to form chlorine... [Pg.142]

Steel in cement mortar is in the passive state represented by field II in Fig. 2-2. In this state reinforcing steel can act as a foreign cathodic object whose intensity depends on aeration (see Section 4.3). The passivity can be lost by introduction of sufficient chloride ions or by reaction of the mortar with COj-forming carbonates, resulting in a considerable lowering of the pH. The coordinates then lie in field I. The concentration of OH ions can be raised by strong cathodic polarization and the potential lowered, resulting in possible corrosion in field IV (see Section 2.4). [Pg.173]

Cable anodes of conducting polymers have an advantage when there are site problems with the installation of other anodes. They are extensively used for the cathodic protection of reinforcing steel in concrete (see Section 19.5.4). [Pg.221]

The danger of corrosion is in general greater for pipelines in industrial installations than in long-distance pipelines because in most cases cell formation occurs with steel-reinforced concrete foundations (see Section 4.3). This danger of corrosion can be overcome by local cathodic protection in areas of distinct industrial installations. The method resembles that of local cathodic protection [1]. The protected area is not limited, i.e., the pipelines are not electrically isolated from continuing and branching pipelines. [Pg.309]

Pumping or compressor stations are necessary for the transport of material in pipelines. These stations are usually electrically separated from the cathodically protected long-distance pipeline. The concrete foundations are much smaller than in power stations and refineries. Since the station piping is endangered by cell formation with the steel-reinforced concrete foundations, local cathodic protection is recommended. [Pg.317]

Structures or pits for water lines are mostly of steel-reinforced concrete. At the wall entrance, contact can easily arise between the pipeline and the reinforcement. In the immediate vicinity of the pit, insufficient lowering of the potential occurs despite the cathodic protection of the pipeline. Figure 12-7 shows that voltage cones caused by equalizing currents are present up to a few meters from the shaft. With protection current densities of 5 mA mr for the concrete surfaces, even for a small pit of 150 m surface area, 0.75 A is necessary. A larger distribution pit of 500 m requires 2.5 A. Such large protection currents can only be obtained with additional impressed current anodes which are installed in the immediate vicinity of the pipe entry into the concrete. The local cathodic protection is a necessary completion of the conventional protection of the pipeline, which would otherwise be lacking in the pit. [Pg.317]

Very often steel sheet pilings exist in conjunction with steel-reinforced concrete structures in harbors or locks. If cathodic protection is not necessary for the reinforced concrete structure, there is no hindrance to the ingress of the protection current due to the connection with the steel surfaces to be protected. The concrete surface has to be partly considered at the design stage. An example is the base of the ferry harbor at Puttgarden, which consists of reinforced concrete and is electrically connected to the uncoated steel sheet piling. [Pg.380]

Cathodic Protection of Reinforcing Steel in Concrete Structures... [Pg.427]

Cathodic protection of reinforcing steel with impressed current is a relatively new protection method. It was used experimentally at the end of the 1950s [21,22] for renovating steel-reinforced concrete structures damaged by corrosion, but not pursued further because of a lack of suitable anode materials so that driving voltages of 15 to 200 V had to be applied. Also, from previous experience [23-26], loss of adhesion between the steel and concrete due to cathodic alkalinity [see Eqs. (2-17) and (2-19)] was feared, which discouraged further technical development. [Pg.427]

However, if part of the reinforcing steel is aerated, a cell is formed as in Section 2.2.4.2. With a high surface area ratio SJS and with well-aerated cathodes, very high corrosion rates can occur at anodic regions. [Pg.428]

The decision to cathodically protect reinforced concrete structures depends on technical and economic considerations. Cathodic protection is not an economic process for small area displacements of the concrete due to corrosion of the reinforcing steel arising from insufficient concrete covering. On the other hand, the... [Pg.431]

The cathodic protection of reinforcing steel and stray current protection measures assume an extended electrical continuity through the reinforcing steel. This is mostly the case with rod-reinforced concrete structures however it should be verified by resistance measurements of the reinforcing network. To accomplish this, measuring cables should be connected to the reinforcing steel after removal of the concrete at different points widely separated from each other. To avoid contact resistances, the steel must be completely cleaned of rust at the contact points. [Pg.433]

There are different concrete replacement systems available for renovating reinforced concrete structures. They range from sprayed concrete without polymer additions to systems containing conducting polymers (PCC-mortar). Since with the latter alkalinity is lower, more rapid carbonization occurs on weathering [59] and the increased electrical resistivity has to be taken into account, so that with cathodic protection only sprayed concrete should be used as a repair mortar. [Pg.435]

Cathodic Protection of Reinforced Concrete Decks, NACE, 20 papers, 1985. [Pg.440]

D. Whiting u. D. Stark, Cathodic Protection for Reinforced Concrete Bridge Decks B Field Evaluation, Final Report, Construction Technology Laboratories, Portland Cement Association, Skokie, Illinois, NCHRP 12-13A (1981). [Pg.440]


See other pages where Cathodic reinforcement is mentioned: [Pg.644]    [Pg.644]    [Pg.493]    [Pg.513]    [Pg.120]    [Pg.274]    [Pg.76]    [Pg.77]    [Pg.48]    [Pg.148]    [Pg.232]    [Pg.274]    [Pg.274]    [Pg.290]    [Pg.298]    [Pg.311]    [Pg.312]    [Pg.317]    [Pg.324]    [Pg.331]    [Pg.335]    [Pg.376]    [Pg.405]    [Pg.407]    [Pg.427]    [Pg.428]    [Pg.432]    [Pg.436]    [Pg.436]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Cathodic protection of reinforcing steel

© 2024 chempedia.info