Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyzed photochemical reaction

Transition-metal catalyzed photochemical reactions for hydrogen generation from water have recently been investigated in detail. The reaction system is composed of three major components such as a photosensitizer (PS), a water reduction catalyst (WRC), and a sacrificial reagent (SR). Although noble-metal complexes as WRC have been used [214—230], examples for iron complexes are quite rare. It is well known that a hydride as well as a dihydrogen (or dihydride) complex plays important roles in this reaction. [Pg.72]

Despite the fact that the [2 + 2] -photocycloaddition reaction of enones has a history of more than 100 years, it has remained a vital and attractive reaction. The continuing interest and many applications to increasingly more complex targets not only bear testimony to its utility but also contradict the myth that photochemical reactions are nonselective and unpredictable. It would be desirable if this most useful chemistry could also be appreciated in the life sciences industry. The first blockbuster drug to be synthesized via a [2 + 2]-photocycloaddition is yet to be developed. Apart from the conventional evolution of the reaction, which involves an increase in scope and an improvement in its practical execution [154], it is expected that sensitization - as a means of catalyzing photochemical reactions in general [155-157] - will become a dominant factor in the development of catalytic enantioselective [2 + 2]-photo-cycloaddition variants. [Pg.205]

Alternatively, light is consumed and the reaction progress is possible only under continuous light absorption this option, called catalyzed photolysis, includes photoassisted generation of a reactive form of substrate or photocatalyst. In the former the process is called catalyzed photochemical reaction, whereas in the latter either catalyst activation may lead to formation of catalyst or photoinitiator, which initiates chemical transformations but is consumed within a reaction cycle, or the catalyst reacts with substrate in its excited state (photosensitization) in both cases... [Pg.63]

Figure 6.17 A formal scheme of a catalyzed photochemical reaction... Figure 6.17 A formal scheme of a catalyzed photochemical reaction...
Chen, C. J. and Osgood, R. M. (1983). Surface-catalyzed photochemical reactions of physisorbed molecules. Appl. Phys. A 31 171-182. [Pg.275]

Evers, J.T.M. and Mackor, A., Photocatalysis 1. Copper(l) trifluorfomethane sulphonate catalyzed photochemical reactions of unsaturated ethers and alcohols. Tetrahedron Lett., 821,1978. [Pg.395]

The radicals are then involved in oxidations such as formation of ketones (qv) from alcohols. Similar reactions are finding value in treatment of waste streams to reduce total oxidizable carbon and thus its chemical oxygen demand. These reactions normally are conducted in aqueous acid medium at pH 1—4 to minimize the catalytic decomposition of the hydrogen peroxide. More information on metal and metal oxide-catalyzed oxidation reactions (Milas oxidations) is available (4-7) (see also Photochemical technology, photocatalysis). [Pg.471]

Benzodiazepines as antianxiety agents, 1, 170 as anticonvulsants, 1, 166 organometallic complexes, 7, 604 as sedatives, 1, 166 IH- 1,2-Benzodiazepines conversion to 3H-1,2-benzodiazepines, 7, 604 synthesis, 7, 597, 598, 604 3H-1,2-Benzodiazepines acid-catalyzed reactions, 7, 601 nucleophilic reactions, 7, 604 oxidation, 7, 603 synthesis, 7, 596 thermal reactions, 7, 600 5H-1,2-Benzodiazepines photochemical reactions, 7, 599 synthesis, 7, 603... [Pg.544]

The reaction between aryl halides and cuprous cyanide is called the Rosenmund-von Braun reactionP Reactivity is in the order I > Br > Cl > F, indicating that the SnAt mechanism does not apply.Other cyanides (e.g., KCN and NaCN), do not react with aryl halides, even activated ones. However, alkali cyanides do convert aryl halides to nitrilesin dipolar aprotic solvents in the presence of Pd(II) salts or copper or nickel complexes. A nickel complex also catalyzes the reaction between aryl triflates and KCN to give aryl nitriles. Aromatic ethers ArOR have been photochemically converted to ArCN. [Pg.867]

According to the Woodward-Hoffmann rule [6, 7], conjugate polyenes with 4n and 4n+2 n electrons undergo cychzations in conrotatory and disrotatory fashions under the thermal conditions, respectively. Recently, novel cycloisomerizations were found to be catalyzed by Lewis acid and to afford bicychc products [39] as photochemical reactions do [40]. The new finding supports the mechanistic spectrum of chemical reactions. [Pg.33]

Trauner and colleagues [39] recently found a striking contrast in the thermal and catalyzed reactions of a triene. Thermal reaction of a trienolate readily underwent disrotatory electrocyclization to afford cyclohexadiene (delocalization band in Scheme 8) in accordance with the Woodward-Hoffmann rule. Surprisingly, treatment of the trienolate with Lewis acid did not result in the formation of the cyclohexadiene but rather gave bicyclo[3.1.0]hexene in a [4n +2nJ manner (pseudoexcitation band in Scheme 8). The catalyzed reaction is similar to the photochemical reaction in the delocalization band. [Pg.34]

The hexatriene is polarized by unsymmetrical substitution with the C=0 group, and further activated by coordination with Lewis acid. The catalyzed reaction is polar. The similarity between the catalyzed and the photochemical reactions can be understood if polar reactions belong to the pseudoexcitation band as has been proposed in Sect 1. [Pg.34]

Other photochemical reactions have been reported as in the Mercat process involving gas-phase mercury-catalyzed oxidative homo- and cross-couplings (Equation (16)) 25>2Sa>2Sb... [Pg.107]

Several other types of photochemical reactions involving unsaturated carbohydrates have been reported. One of these is38 photochemical, E -Z isomerization of the groups attached to a double bond (see Scheme 5). A second is the internal cycloaddition between two double bonds connected by a carbohydrate chain.39-41 Although the carbohydrate portion of the molecule is not directly involved in this cycloaddition, its presence induces optical activity in the cyclobutane derivatives produced photochemically. Finally, a group of acid-catalyzed addition-reactions has been observed for which the catalyst appears to arise from photochemical decomposition of a noncarbohydrate reactant.42-44... [Pg.121]

In general, the rearrangements of dienes and polyenes can be both thermal and photochemical reactions (the latters are not included in this chapter), and can be catalyzed by acids, bases, metal complexes and enzymes. They can be degenerate processes or occur with the introduction or elimination of functional groups, be accompanied by shifts of multiple bonds or by migrations of atoms or groups and they may lead to cyclizations. [Pg.740]

Both target compounds discussed in this review, kelsoene (1) and preussin (2), provide a fascinating playground for synthetic organic chemists. The construction of the cyclobutane in kelsoene limits the number of methods and invites the application of photochemical reactions as key steps. Indeed, three out of five completed syntheses are based on an intermolecular enone [2+2]-photocycloaddition and one—our own—is based on an intramolecular Cu-catalyzed [2+2]-photocycloaddition. A unique approach is based on a homo-Favorskii rearrangement as the key step. Contrary to that, the pyrrolidine core of preussin offers a plentitude of synthetic alternatives which is reflected by the large number of syntheses completed to date. The photochemical pathway to preussin has remained unique as it is the only route which does not retrosynthetically disconnect the five-membered heterocycle. The photochemical key step is employed for a stereo- and regioselective carbo-hydroxylation of a dihydropyrrole precursor. [Pg.39]

In general, zero-order reactions are those whose rates are determined by some factor other than the concentration of the reacting materials, e.g., the intensity of radiation within the vat for photochemical reactions, or the surface available in certain solid catalyzed gas reactions. It is important, then, to define the rate of zero-order reactions so that this other factor is included and properly accounted for. [Pg.48]

Further methods [205] successfully employed to synthesize fuUeropyrroUdines include acid-catalyzed [213] or thermal [214] desilylation of trimethylsilyl amino derivatives, tautomerization of a-aminoesters of immonium salts [215] and imines [216, 217], reaction with aldehydes in the presence of aqueous ammonia [218], reaction with oxazolidinone [204] or photochemical reaction with some amino derivatives [219-223], The reaction with amino acids and aldehydes was also carried... [Pg.142]


See other pages where Catalyzed photochemical reaction is mentioned: [Pg.371]    [Pg.231]    [Pg.233]    [Pg.295]    [Pg.2390]    [Pg.582]    [Pg.106]    [Pg.109]    [Pg.371]    [Pg.231]    [Pg.233]    [Pg.295]    [Pg.2390]    [Pg.582]    [Pg.106]    [Pg.109]    [Pg.36]    [Pg.12]    [Pg.1000]    [Pg.18]    [Pg.274]    [Pg.468]    [Pg.159]    [Pg.7]    [Pg.514]    [Pg.153]    [Pg.516]    [Pg.143]    [Pg.67]    [Pg.45]    [Pg.107]    [Pg.228]    [Pg.129]    [Pg.154]    [Pg.210]   
See also in sourсe #XX -- [ Pg.65 , Pg.67 , Pg.68 ]




SEARCH



Aromatic photochemical reactions metal-catalyzed reaction

© 2024 chempedia.info