Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure sensitive catalytic reaction

Catalytic reactions at a metal surface involve a subtle and delicate balance of adsorption forces. Too weak an adsorption and the catalyst will have low activity, too strong and the surface becomes poisoned by adsorbed reactants or products. Consequently, quite small changes in the nature of a metal surface may result in significant variations in catalytic properties. Structure sensitivity is known to exist. There is good evidence that the selectivity and activity of a metal catalyst are affected by changes in structure and/or electronic properties. [Pg.149]

It has long been known that catalytic reaction rates and selectivity can depend sensitively on the size of catalyst particles (37-39). Such structural sensitivity has generally been explained by models whereby the activity or selectivity of the reaction was assumed to vary markedly with the local geometry of the surface sites. Using the methods outlined above, it has now been unequivocally proved that, indeed, many steady-state high-pressure catalytic reactions depend sensitively on the crystal-surface orientation of the model catalysts, and that others do not. This subject has been recently reviewed by Boudart (40), who points out the potential utility of single-crystal surfaces as standards against which to compare industrial catalysts. [Pg.15]

The systematic use of classical catalytic kinetics is always a useful approach in modeling (Boudart 1986). Even if these models do not reflect the true mechanism in the case of structure-sensitive catalysts, they are a formally correct representation of the observed facts. As Boudart sees it in the case of structure-insensitive reactions, it can also be the real thing. [Pg.121]

Very recently, considerable effort has been devoted to the simulation of the oscillatory behavior which has been observed experimentally in various surface reactions. So far, the most studied reaction is the catalytic oxidation of carbon monoxide, where it is well known that oscillations are coupled to reversible reconstructions of the surface via structure-sensitive sticking coefficients of the reactants. A careful evaluation of the simulation results is necessary in order to ensure that oscillations remain in the thermodynamic limit. The roles of surface diffusion of the reactants versus direct adsorption from the gas phase, at the onset of selforganization and synchronized behavior, is a topic which merits further investigation. [Pg.430]

The studies of ammonia synthesis over Fe and Re and the hydrodesulfurization of thiophene over Mo, described above, illustrate the importance and success of our approach of studying catalysis over single crystal samples at high pressures. The use of surfaces having a variety of orientations allows the study of reactions that are surface structure sensitive 6Uid provides insight into the nature of the catalytic site. Here we have shown that the ammonia synthesis... [Pg.162]

We have studied the steady-state kinetics and selectivity of this reaction on clean, well-characterized sinxle-crystal surfaces of silver by usinx a special apparatus which allows rapid ( 20 s) transfer between a hixh-pressure catalytic microreactor and an ultra-hixh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The results of some of our recent studies of this reaction will be reviewed. These sinxle-crystal studies have provided considerable new insixht into the reaction pathway throuxh molecularly adsorbed O2 and C2H4, the structural sensitivity of real silver catalysts, and the role of chlorine adatoms in pro-motinx catalyst selectivity via an ensemble effect. [Pg.210]

Platinum Nanoclusters Size and Surface Structure Sensitivity of Catalytic Reactions... [Pg.149]

ME technique is of special interest in the preparation of catalytically active materials, as the control of particle size and monodispersity are very important for structure-sensitive reactions, like hydrogenations [15]. Metal... [Pg.293]

The used Pd/ACF catalyst shows a higher selectivity than the fresh Lindlar catalyst, for example, 94 1% versus 89 + 2%, respectively, at 90% conversion. The higher yield of 1-hexene is 87 + 2% with the used catalyst versus 82 + 3% of the Lindlar in a 1.3-fold shorter reaction time. Higher catalyst activity and selectivity is attributed to Pd size and monodispersity. Alkynes hydrogenation is structure-sensitive. The highest catalytic activity and alkene selectivity are observed with Pd dispersions <20% [26]. This indicates the importance of the Pd size control during the catalyst preparation. This can be achieved via the modified ME technique. [Pg.297]

The synthesis of Pt nanocrystals with controlled morphology must have interesting applications in practice, since the catalytic activity for structure-sensitive reactions depends on the orientation of the crystalline facets. Using the obtained morphologically controlled Pt nanoparticles, Pt/Al203 catalysts were prepared and applied for a structure-sensitive reaction, i.e., NO reduction by CH4. [Pg.304]

Numerous quantum mechanic calculations have been carried out to better understand the bonding of nitrogen oxide on transition metal surfaces. For instance, the group of Sautet et al have reported a comparative density-functional theory (DFT) study of the chemisorption and dissociation of NO molecules on the close-packed (111), the more open (100), and the stepped (511) surfaces of palladium and rhodium to estimate both energetics and kinetics of the reaction pathways [75], The structure sensitivity of the adsorption was found to correlate well with catalytic activity, as estimated from the calculated dissociation rate constants at 300 K. The latter were found to agree with numerous experimental observations, with (111) facets rather inactive towards NO dissociation and stepped surfaces far more active, and to follow the sequence Rh(100) > terraces in Rh(511) > steps in Rh(511) > steps in Pd(511) > Rh(lll) > Pd(100) > terraces in Pd (511) > Pd (111). The effect of the steps on activity was found to be clearly favorable on the Pd(511) surface but unfavorable on the Rh(511) surface, perhaps explaining the difference in activity between the two metals. The influence of... [Pg.85]

A few additional points have also been raised by specific surface-science work concerning the catalytic reduction of NO. For instance, it has been widely recognized that the reaction is sensitive to the structure of the catalytic surface. It was determined that rough surfaces such as (110), or even (100), planes enhance NO dissociation over flatter (111) surfaces, and also favor N2 desorption instead of N20 production. On the other hand, NO dissociation leads to poisoning by the resulting atomic species, hence the faster reaction rates seen with medium-size vs. larger particles on model rhodium supported catalyst (the opposite appears to be true on palladium). Also, at least in the case of palladium, the formation of an isocyanate (-NCO) intermediate was identified... [Pg.90]

Furthermore, ir-arene complexes of transition metals are seldom formed by the direct reaction of benzene with metal complexes. More usually, the syntheses require the formation of (often unstable) metal aryl complexes and these are then converted to ir-arene complexes. The analogous formation of w-adsorbed benzene at a metal surface via the initial formation of ff-adsorbcd phenyl, merits more consideration than it has yet been given. It is to be hoped that the recognition and study of structure-sensitive reactions will allow more exact definition of the sites responsible for catalytic activity at metal surfaces. The reactions of benzene, using suitably labeled materials, may prove to be useful probes for such studies. [Pg.154]

Asymmetric diarylmethanes, hydrogenolytic behaviors, 29 229-270, 247-252 catalytic hydrogenolysis, 29 243-258 kinetics and scheme, 29 252-258 M0O3-AI2O3 catalyst, 29 259-269 relative reactivity, 29 255-257 schematic model, 29 254 Asymmetric hydrogenations, 42 490-491 Asymmetric synthesis, 25 82, 83 examples of, 25 82 Asymmetry factor, 42 123-124 Atom-by-species matrix, 32 302-303, 318-319 Atomic absorption, 27 317 Atomic catalytic activities of sites, 34 183 Atomic displacements, induced by adsorption, 21 212, 213 Atomic rate or reaction definition, 36 72-73 structure sensitivity and, 36 86-87 Atomic species, see also specific elements adsorbed... [Pg.51]

Dendrimer templated Pt-Au catalysts are also active for the selective catalytic reduction of NO by propylene in the presence of excess O2. In addition to its commercial importance, this reaction is particularly interesting for the Pt-Au system. Previous work with cluster-derived Pt-Au catalysts has demonstrated that this reaction exhibits structure sensitivity, suggesting that it may be possible to use it as a structural probe for Pt based catalysts. ... [Pg.108]

Various catalytic reactions are known to be structure sensitive as proposed by Boudart and studied by many authors. Examples are the selective hydrogenation of polyunsaturated hydrocarbons, hydrogenolysis of paraffins, and ammonia or Fischer-Tropsch synthesis. Controlled surface reactions such as oxidation-reduction reactions ° or surface organometallic chemistry (SOMC) " are two suitable methods for the synthesis of mono- or bimetallic particles. However, for these techniques. [Pg.256]

These reactions exemplify the two major types of catalytic processes, namely, those where the specific activity is sensitive to changes in the catalyst particle morphology (structure sensitive), and those where the specific activity is independent of the catalyst morphology (structure insensitive). Generally, reactions (1) and (2) are structure insensitive whereas reactions of type (3) are structure sensitive. [Pg.156]

The combined use of the modem tools of surface science should allow one to understand many fundamental questions in catalysis, at least for metals. These tools afford the experimentalist with an abundance of information on surface structure, surface composition, surface electronic structure, reaction mechanism, and reaction rate parameters for elementary steps. In combination they yield direct information on the effects of surface structure and composition on heterogeneous reactivity or, more accurately, surface reactivity. Consequently, the origin of well-known effects in catalysis such as structure sensitivity, selective poisoning, ligand and ensemble effects in alloy catalysis, catalytic promotion, chemical specificity, volcano effects, to name just a few, should be subject to study via surface science. In addition, mechanistic and kinetic studies can yield information helpful in unraveling results obtained in flow reactors under greatly different operating conditions. [Pg.2]

The catalytic behavior of small metal particles in heterogeneous catalysts varies with metallic particle size and shape a phenomenon referred as a structure-sensitivity. Simple alkanes such as ethane, propane, n-butane and isobutane can be used as archetype molecules for studying hydrogenolysis reactions as they... [Pg.628]


See other pages where Structure sensitive catalytic reaction is mentioned: [Pg.6]    [Pg.6]    [Pg.6]    [Pg.6]    [Pg.944]    [Pg.488]    [Pg.274]    [Pg.211]    [Pg.54]    [Pg.298]    [Pg.165]    [Pg.169]    [Pg.171]    [Pg.175]    [Pg.301]    [Pg.305]    [Pg.466]    [Pg.130]    [Pg.567]    [Pg.100]    [Pg.499]    [Pg.8]    [Pg.184]    [Pg.167]    [Pg.184]    [Pg.255]    [Pg.153]    [Pg.154]    [Pg.204]    [Pg.146]    [Pg.191]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Reactions sensitivities

Sensitization reactions

Sensitizers reactions

Structure sensitive reactions

Structure sensitivity

Structure-sensitive sensitivity

© 2024 chempedia.info