Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugate reduction, catalytic hydrogenation

The CD fragment 1s synthesized starting with resolved bicyclic acid 129. Sequential catalytic hydrogenation and reduction with sodium borohydride leads to the reduced hydroxy acid 1. The carboxylic acid function is then converted to the methyl ketone by treatment with methyl-lithium and the alcohol is converted to the mesylate. Elimination of the latter group with base leads to the conjugated olefin 133. Catalytic reduction followed by equilibration of the ketone in base leads to the saturated methyl ketone 134. Treatment of that intermediate with peracid leads to scission of the ketone by Bayer Villiger reaction to afford acetate 135. The t-butyl protecting... [Pg.1154]

The Birch reductions of C C double bonds with alkali metals in liquid ammonia or amines obey other rules than do the catalytic hydrogenations (D. Caine, 1976). In these reactions regio- and stereoselectivities are mainly determined by the stabilities of the intermediate carbanions. If one reduces, for example, the a, -unsaturated decalone below with lithium, a dianion is formed, whereof three different conformations (A), (B), and (C) are conceivable. Conformation (A) is the most stable, because repulsion disfavors the cis-decalin system (B) and in (C) the conjugation of the dianion is interrupted. Thus, protonation yields the trans-decalone system (G. Stork, 1964B). [Pg.103]

The Birch reduction not only provides a method to prepare dienes from arenes which cannot be accomplished by catalytic hydrogenation but also gives a nonconju gated diene system rather than the more stable conjugated one... [Pg.439]

Amides are very weak nucleophiles, far too weak to attack alkyl halides, so they must first be converted to their conjugate bases. By this method, unsubstituted amides can be converted to N-substituted, or N-substituted to N,N-disubstituted, amides. Esters of sulfuric or sulfonic acids can also be substrates. Tertiary substrates give elimination. O-Alkylation is at times a side reaction. Both amides and sulfonamides have been alkylated under phase-transfer conditions. Lactams can be alkylated using similar procedures. Ethyl pyroglutamate (5-carboethoxy 2-pyrrolidinone) and related lactams were converted to N-alkyl derivatives via treatment with NaH (short contact time) followed by addition of the halide. 2-Pyrrolidinone derivatives can be alkylated using a similar procedure. Lactams can be reductively alkylated using aldehydes under catalytic hydrogenation... [Pg.513]

Copper-mediated conjugate reductions of enones and enoates were reported in 1988 by Stryker and co-workers (188). Stryker and Mahoney (189) showed that the reaction could be made catalytic in copper under an atmosphere of hydrogen gas however, under these conditions, overreduction was observed. In 1998, Lipshutz... [Pg.87]

Electrocatalytic hydrogenation has the advantage of milder reaction conditions compared to catalytic hydrogenation. The development of various electrode materials (e.g., massive electrodes, powder cathodes, polymer film electrodes) and the optimization of reaction conditions have led to highly selective electrocatalytic hydrogenations. These are very suitable for the conversion of aliphatic and aromatic nitro compounds to amines and a, fi-unsaturated ketones to saturated ketones. The field is reviewed with 173 references in [158]. While the reduction of conjugated enones does not always proceed chemoselectively at a Hg cathode, the use of a carbon felt electrode coated with polyviologen/Pd particles provided saturated ketones exclusively (Fig. 34) [159]. [Pg.419]

In systems of conjugated double bonds catalytic hydrogenation usually gives a mixture of all possible products. Conjugated dienes and polyenes can be reduced by metals sodium, potassium, or lithium. The reduction is accomplished by 1,4-addition which results in the formation of a product with only one double bond and products of coupling and polymerization. Isoprene was reduced in 60% yield to 2-methyl-2-butene by sodium in liquid ammonia [357]. Reduction of cyclooctatetraene with sodium in liquid ammonia gave a... [Pg.42]

Double bonds conjugated with aromatic rings and with carbonyl, carboxyl, nitrile and other functions are readily reduced by catalytic hydrogenation and by metals. These reductions are discussed in the appropriate sections aromatics, unsaturated aldehydes and ketones, unsaturated acids, their derivatives, etc. [Pg.43]

Double bonds conjugated with benzene rings are reduced electrolytically [344] (p. 23). Where applicable, stereochemistry can be influenced by using either catalytic hydrogenation or dissolving metal reduction [401] (p. 24). Indene was converted to indane by sodium in liquid ammonia in 85% yield [402] and acenaphthylene to acenaphthene in 85% yield by reduction with lithium aluminum hydride in carbitol at 100° [403], Since the benzene ring is not inert toward alkali metals, nuclear reduction may accompany reduction of the double bond. Styrene treated with lithium in methylamine afforded 25% of 1-ethylcyclohexene and 18% of ethylcyclohexane [404]. [Pg.49]

Acetylenic alcohols, usually of propargylic type, are frequently intermediates in the synthesis, and selective reduction of the triple bond to a double bond is desirable. This can be accomplished by carefully controlled catalytic hydrogenation over deactivated palladium [56, 364, 365, 366, 368, 370], by reduction with lithium aluminum hydride [555, 384], zinc [384] and chromous sulfate [795], Such partial reductions were carried out frequently in alcohols in which the triple bonds were conjugated with one or more double bonds [56, 368, 384] and even aromatic rings [795]. [Pg.78]

Unsaturated epoxides are reduced preferentially at the double bonds by catalytic hydrogenation. The rate of hydrogenolysis of the epoxides is much lower than that of the addition of hydrogen across the carbon-carbon double bond. In a, -unsaturated epoxides borane attacks the conjugated double bond at -carbon in a cis direction with respect to the epoxide ring and gives allylic alcohols [660], Similar complex reduction of epoxides occurs in a-keto epoxides (p. 126). [Pg.84]

Reduction of unsaturated ketones to saturated alcohols is achieved by catalytic hydrogenation using a nickel catalyst [49], a copper chromite catalyst [50, 887] or by treatment with a nickel-aluminum alloy in sodium hydroxide [555]. If the double bond is conjugated, complete reduction can also be obtained with some hydrides. 2-Cyclopentenone was reduced to cyclopentanol in 83.5% yield with lithium aluminum hydride in tetrahydrofuran [764], with lithium tris tert-butoxy)aluminium hydride (88.8% yield) [764], and with sodium borohydride in ethanol at 78° (yield 100%) [764], Most frequently, however, only the carbonyl is reduced, especially with application of the inverse technique (p. 21). [Pg.121]

A variety of substrates have been catalytically hydrogenated at room temperature and 1 -atm. hydrogen pressure by pentacyanocobaltate(ll) anion. Conjugation is required for the reduction of C=C bonds The effects of detailed molecular structure on reducibility and of cyanide-cobalt ratio on mode of reduction have been noted Poisoning and reactivation of the catalyst as well as the effect of alkali are described, and mechanisms are tentatively proposed for these phenomena It is concluded that the aging reaction of pentacyanocobaltate(ll) is reversible A dimerization of acrylic acids at elevated temperatures was found ... [Pg.205]


See other pages where Conjugate reduction, catalytic hydrogenation is mentioned: [Pg.208]    [Pg.434]    [Pg.28]    [Pg.248]    [Pg.35]    [Pg.45]    [Pg.1003]    [Pg.1009]    [Pg.434]    [Pg.406]    [Pg.92]    [Pg.235]    [Pg.713]    [Pg.184]    [Pg.395]    [Pg.29]    [Pg.70]    [Pg.119]    [Pg.184]    [Pg.272]    [Pg.243]    [Pg.45]    [Pg.62]    [Pg.154]    [Pg.552]    [Pg.776]    [Pg.289]    [Pg.614]    [Pg.255]    [Pg.624]    [Pg.306]   


SEARCH



Catalytic reduction

Conjugate hydrogenation

Conjugate reduction

Conjugated hydrogenation

Nitriles, catalytic hydrogenation conjugate reduction

Reduction Hydrogenation

Reduction catalytic hydrogenation

Reduction hydrogen

Reductive catalytic

Stereochemistry conjugate reduction, catalytic hydrogenation

Substrates conjugate reduction, catalytic hydrogenation

© 2024 chempedia.info