Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic cycle Heck reaction

The catalytic cycle of the Heck reaction can be formulated with four steps as follows ... [Pg.155]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Many types of functional groups are tolerated in a Suzuki reaction, and the yields are often good to very good. The presence of a base, e.g. sodium hydroxide or sodium/potassium carbonate, is essential for this reaction. The base is likely to be involved in more than one step of the catalytic cycle, at least in the transmetal-lation step. Proper choice of the base is important in order to obtain good results." In contrast to the Heck reaction and the Stille reaction, the Suzuki reaction does not work under neutral conditions. [Pg.274]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

OUTLINE OF THE CATALYTIC CYCLE FOR THE HECK COUPLING REACTION... [Pg.34]

Microwave-assisted Heck reaction of (hetero)aryl bromides with N,N-dimethyl-2-[(2-phenylvinyl)oxy]ethanamine, using Herrmann s palladacycle as a precatalyst, yielded the corresponding /3-(hetero)arylated Heck products in a good EjZ selectivity (Scheme 79) [90]. The a/yd-regioselectivity can be explained by the chelation control in the insertion step. This selectivity is better than 10/90 when no severe steric hindrance is introduced in the (hetero)aryl bromides. The process does not require an inert atmosphere. There is evidence that a Pd(0)/Pd(II)- and not Pd(II)/Pd(IV)-based catalytic cycle is involved. Similarly, other j6-amino-substituted vinyl ethers such as... [Pg.196]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

Scheme 6.5 Catalytic cycle for the Mizoroki-Heck reaction... Scheme 6.5 Catalytic cycle for the Mizoroki-Heck reaction...
Microwave irradiation is used to create hot spots on metal clusters in solution, facilitating catalytic cycles in which these clusters participate. An 8x 12 parallel screening system is built based on this concept, and tested using the Heck reaction as a case study. The spatial reproducibility of this system is examined and the pros and cons of monomode and multimode m/w setups are discussed. [Pg.211]

Palladium-catalyzed carbon-carbon cross-coupling reactions are among the best studied reactions in recent decades since their discovery [102, 127-130], These processes involve molecular Pd complexes, and also palladium salts and ligand-free approaches, where palladium(O) species act as catalytically active species [131-135]. For example, the Heck reaction with aryl iodides or bromides is promoted by a plethora of Pd(II) and Pd(0) sources [128, 130], At least in the case of ligand-free palladium sources, the involvement of soluble Pd NPs as a reservoir for catalytically active species seems very plausible [136-138], Noteworthy, it is generally accepted that the true catalyst in the reactions catalyzed by Pd(0) NPs is probably molecular zerovalent species detached from the NP surface that enter the main catalytic cycle and subsequently agglomerate as N Ps or even as bulk metal. [Pg.17]

The retentions of the catalysts were also measured on a synthetic reaction mixture. The Heck-catalyst showed a retention of 96% while under experimental conditions retentions lower than 90% were obtained. For the PTC the values are both higher than 99%. The authors assume that this big difference for the Heck-catalyst is caused by the formation of smaller Pd species in the catalytic cycle. However, no precipitation or Pd-black formation was observed. [Pg.98]

Since the hydride based isomerisation is such a facile reaction it often occurs even when it is not desired. Thus, if hydrides play a role in the catalytic cycle and alkenes are present or formed during the reaction, isomerisation may represent an undesired side reaction. For instance in the Heck reaction (see Chapter 13) an alkene and a palladium hydride are formed and thus, if the alkene can isomerise, this may happen at the end of the cycle as a secondary process. [Pg.102]

As an extension of the Heck reaction, Pd-catalyzed hydroarylation of alkynes and alkenes continnes to attract high level of research interest in simple couphng processes and in cyclization reactions. The use of this type of transformation as part of a domino reaction will be of increasing interest. The research in the field of domino reactions is attracting considerable attention in synthetic organic chemistry since it enables the rapid assembly of complex molecirles in one-pot processes. Very elegant examples of palladium-catalyzed cascade processes where a single catalytic cycle entails several sequential bond transformations have been recently reported [la, b, 2a, b, c]. [Pg.331]

The main steps in the currently accepted catalytic cycle of the Heck reaction are oxidative addition, carbopalla-dation (G=G insertion), and / -hydride elimination. It is well established that both, the insertion as well as the elimination step, are m-stereospecific. Only in some cases has formal /r/ / i--elimination been observed. For example, exposure of the l,3-dibromo-4-(dihydronaphthyloxy)benzene derivative 16 and an alkene 1-R to a palladium source in the presence of a base led to a sequential intra-intermolecular twofold Heck reaction furnishing the alkenylated tetracyclic products 17 in good to excellent yields (Scheme 9). " In the rate-determining step, the base removes a proton in an antiperiplanar orientation from the benzylic palladium intermediate. The best amine base was found to be l,4-diazabicyclo[2.2.2]octane, which apparently has an optimal shape for this proton abstraction. [Pg.314]

The Heck reaction,5 sometimes also mentioned with cross-coupling reactions, deserves distinction not only for being mechanisticly different but also for its synthetic importance. In the catalytic cycle depicted in Figure... [Pg.21]

The seven membered core of iboga alkaloids has also been constructed in an intramolecular Heck reaction. Insertion of a pendant olefin into the indolylpalladium complex, formed from iodoindole, followed by / -hydride elimination gave the complex framework of the natural product (5.5.), Although the insertion step could have led to the formation of a six membered ring, the formed palladium complex would have contained a quaternary carbon center in the -position, blocking the closure of the catalytic cycle under the applied conditions.5... [Pg.89]

Indolizines were arylated under similar conditions selectively in the 3-position (6.90.). A detailed mechanistic study of the transformation revealed that in this reaction the arylpalladium species, formed in the first step of the catalytic cycle, is attached to the indolizine core in an electrophilic substitution step, which is followed by reductive elimination. The presence of alternate routes such as Heck-type insertion, oxidative addition of the C-H bond, or transmetalation were excluded on the basis of experimental evidence.121... [Pg.130]


See other pages where Catalytic cycle Heck reaction is mentioned: [Pg.1089]    [Pg.23]    [Pg.567]    [Pg.567]    [Pg.34]    [Pg.202]    [Pg.303]    [Pg.217]    [Pg.236]    [Pg.211]    [Pg.70]    [Pg.8]    [Pg.24]    [Pg.316]    [Pg.370]    [Pg.396]    [Pg.130]    [Pg.44]    [Pg.158]    [Pg.571]    [Pg.3]    [Pg.571]    [Pg.571]    [Pg.9]    [Pg.612]    [Pg.15]    [Pg.23]    [Pg.169]    [Pg.196]    [Pg.209]    [Pg.78]   
See also in sourсe #XX -- [ Pg.1321 ]

See also in sourсe #XX -- [ Pg.1321 ]

See also in sourсe #XX -- [ Pg.1321 ]




SEARCH



Catalytic Cycle for the Heck Reaction

Catalytic Heck reaction

Catalytic cycle

Catalytic cycle, Heck-Matsuda reaction

Catalytic reactions Heck reaction

Cycling reactions

Heck catalytic cycle

Heck reaction mechanism/catalytic cycle

Mizoroki-Heck reaction catalytic cycle

Reaction cycle

Single catalytic cycles Heck reaction

© 2024 chempedia.info