Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic corrosion

In addition to kinetic processes, the contribution of some "side processes can also be essential. Among these processes there are the diffusion of reactants into the catalyst bulk and any effect of the reaction media on catalysts (catalytic corrosion, reconstruction of a catalyst surface layer caused by reaction, etc.). [Pg.362]

The influence of surface-active and catalytic media on the properties of the solid phase is not limited solely to the lowering of the surface free energy. One of the first observations in this area was that of the so-called catalytic corrosion, that is, the reconstruction of crystallographic edges on the catalyst surface [139]. On numerous occasions changes in the chemical composition of the near-surface layers, the migration of crystalline clusters, the disappearance of the small partieles, and other phenomena were reported [79,140-148]. [Pg.333]

Lyubovskiy, M. P. and V. V. Barelko. 1994. Dynamics of catalytic corrosion on the surface of platinum catalyst in the oxidation of ammonia. Kinetika i Kataliz. 35 376-381. [Pg.345]

This chapter will explore surface reactions at the atomic level. A brief discussion of corrosion reactions is followed by a more detailed look at growth and etchmg reactions. Finally, catalytic reactions will be considered, with a strong emphasis on the surface science approach to catalysis. [Pg.921]

There are, however, continuing difficulties for catalytic appHcations of ion implantation. One is possible corrosion of the substrate of the implanted or sputtered active layer this is the main factor in the long-term stabiHty of the catalyst. Ion implanted metals may be buried below the surface layer of the substrate and hence show no activity. Preparation of catalysts with high surface areas present problems for ion beam techniques. Although it is apparent that ion implantation is not suitable for the production of catalysts in a porous form, the results indicate its strong potential for the production and study of catalytic surfaces that caimot be fabricated by more conventional methods. [Pg.398]

Vapor-phase catalytic oxidation of dutene is a mote direct route to the dianhydtide. Hbls in Europe apparently uses this route, which eliminates the need for a separate dehydration step and for handling of any oxidants or solvents. Continuous operation is faciHtated, corrosion is minimized, and product recovery is simplified. The vapor-phase oxidation of dutene is similar to that of o-xylene to phthaHc anhydtide, and phthaHc anhydtide units can be... [Pg.499]

Isopropyl Alcohol. Propylene may be easily hydrolyzed to isopropyl alcohol. Eady commercial processes involved the use of sulfuric acid in an indirect process (100). The disadvantage was the need to reconcentrate the sulfuric acid after hydrolysis. Direct catalytic hydration of propylene to 2-propanol followed commercialization of the sulfuric acid process and eliniinated the need for acid reconcentration, thus reducing corrosion problems, energy use, and air pollution by SO2 and organic sulfur compounds. Gas-phase hydration takes place over supported oxides of tungsten at 540 K and 25... [Pg.129]

Water Treatment. Sodium sulfite is an agent in the reduction of chlorine or oxygen in water. Dissolved oxygen in boiler water tends to enhance pitting and other types of corrosion. In boilers operated at below 4.82 MPa (700 psi), a residual concentration of 30 ppm of sodium sulfite is generally effective. Catalytic amounts of cobalt are often added to accelerate the reaction of oxygen with sulfite (321,322) (see Water, industrial water treatment). [Pg.149]

The metal parts of the injection molder, ie, the liner, torpedo, and nozzle, that contact the hot molten resin must be of the noncatalytic type to prevent accelerated decomposition of the polymer. In addition, they must be resistant to corrosion by HCl. Iron, copper, and zinc are catalytic to the decomposition and caimot be used, even as components of alloys. Magnesium is noncatalytic but is subject to corrosive attack, as is chromium when used as plating. Nickel alloys such as Duranickel, HasteUoy B, and HasteUoy C are recommended as constmction materials for injection-molding metal parts. These and pure nickel are noncatalytic and corrosion-resistant however, pure nickel is rather soft and is not recommended. [Pg.440]

The hydrocarbon gas feedstock and Hquid sulfur are separately preheated in an externally fired tubular heater. When the gas reaches 480—650°C, it joins the vaporized sulfur. A special venturi nozzle can be used for mixing the two streams (81). The mixed stream flows through a radiantly-heated pipe cod, where some reaction takes place, before entering an adiabatic catalytic reactor. In the adiabatic reactor, the reaction goes to over 90% completion at a temperature of 580—635°C and a pressure of approximately 250—500 kPa (2.5—5.0 atm). Heater tubes are constmcted from high alloy stainless steel and reportedly must be replaced every 2—3 years (79,82—84). Furnaces are generally fired with natural gas or refinery gas, and heat transfer to the tube coil occurs primarily by radiation with no direct contact of the flames on the tubes. Design of the furnace is critical to achieve uniform heat around the tubes to avoid rapid corrosion at "hot spots."... [Pg.30]

The polymer-supported catalysts are thus important conceptually in linking catalysis in solutions and catalysis on supports. The acid—base chemistry is fundamentally the same whether the catalytic groups are present in a solution or anchored to the support. The polymer-supported catalysts have replaced acid solutions in numerous processes because they minimise the corrosion, separation, and disposal problems posed by mineral acids. [Pg.175]

Refining and Isomerization. Whatever chlorination process is used, the cmde product is separated by distillation. In successive steps, residual butadiene is stripped for recycle, impurities boiling between butadiene (—5° C) and 3,4-dichloto-l-butene [760-23-6] (123°C) are separated and discarded, the 3,4 isomer is produced, and 1,4 isomers (140—150°C) are separated from higher boiling by-products. Distillation is typically carried out continuously at reduced pressure in corrosion-resistant columns. Ferrous materials are avoided because of catalytic effects of dissolved metal as well as unacceptable corrosion rates. Nickel is satisfactory as long as the process streams are kept extremely dry. [Pg.38]

Product Quality Considerations of product quahty may require low holdup time and low-temperature operation to avoid thermal degradation. The low holdup time eliminates some types of evaporators, and some types are also eliminated because of poor heat-transfer charac teristics at low temperature. Product quality may also dic tate special materials of construction to avoid met hc contamination or a catalytic effect on decomposition of the product. Corrosion may also influence evaporator selection, since the advantages of evaporators having high heat-transfer coefficients are more apparent when expensive materials of construction are indicated. Corrosion and erosion are frequently more severe in evaporators than in other types of equipment because of the high hquid and vapor velocities used, the frequent presence of sohds in suspension, and the necessary concentration differences. [Pg.1138]

Where is naphthenic acid corrosion found Naphthenic acid corrosion occurs primarily in crude and vacuum distillation units, and less frequently in thermal and catalytic cracking operations. It usually occurs in furnace coils, transfer lines, vacuum columns and their overhead condensers, sidestream coolers, and pumps. [Pg.264]


See other pages where Catalytic corrosion is mentioned: [Pg.265]    [Pg.12]    [Pg.64]    [Pg.212]    [Pg.337]    [Pg.345]    [Pg.52]    [Pg.265]    [Pg.12]    [Pg.64]    [Pg.212]    [Pg.337]    [Pg.345]    [Pg.52]    [Pg.109]    [Pg.37]    [Pg.280]    [Pg.7]    [Pg.7]    [Pg.82]    [Pg.331]    [Pg.184]    [Pg.384]    [Pg.387]    [Pg.437]    [Pg.134]    [Pg.383]    [Pg.164]    [Pg.186]    [Pg.358]    [Pg.390]    [Pg.6]    [Pg.422]    [Pg.166]    [Pg.222]    [Pg.39]    [Pg.79]    [Pg.484]    [Pg.2173]    [Pg.449]    [Pg.2]   
See also in sourсe #XX -- [ Pg.362 ]




SEARCH



© 2024 chempedia.info