Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic activity pattern

The preparation and application of SAM systems patterned by STM and their use in catalysis was demonstrated by Wittstock and Schuhmann [123]. The patterning (local desorption) of SAMs from alkane thiols on gold was performed by scanning electrochemical microscopy (SECM), followed by the assembly of an amino-deriva-tized disulfide and coupling of glucose oxidase to form a catalytically active pattern of the enzyme. The enzymatic activity could be monitored/imaged by SECM. [Pg.393]

True lipases show the interfacial activation phenomenon in their catalytic activity pattern. At low concentration of water-insoluble substrates, lipases are almost inactive, and the hydrolytic activity does not increase linearly. At a certain substrate concentration, however, the hydrolytic activity of lipases increases rapidly and the lipase kinetics resembles normal enzyme kinetics. This boost in activity is related to the formation of water-insoluble substrate aggregates such as micelles or another second phase. Only when this second phase is present, do lipases become fully active. This interfacial activation is caused by a large conformational change in the 3D structure of the lipases. In their water-soluble form, the active site is covered by a lid, which prevents the substrates from reaching it. At the lipidAvater interface, the lid is opened and the active site is accessible to the substrates. In addition, the now accessible area is mainly hydrophobic, which gives the open-form lipase the shape and behavior of conventional surfactant molecules with a hydrophilic and a hydrophobic moiety in one single molecule. [Pg.1385]

Another approach to the relationship between electronic structure and catalysis has been the search for catalytic activity patterns based on electron configuration and semiconductor type. The first of these patterns to be established was in nitrous oxide decomposition (69-71), as illustrated in Fig. 8. This series, with one or two exceptions, divides remarkably into... [Pg.32]

The catalytic activity of doped nickel oxide on the solid state decomposition of CsN3 decreased [714] in the sequence NiO(l% Li) > NiO > NiO(l% Cr) > uncatalyzed reaction. While these results are in qualitative accordance with the assumption that the additive provided electron traps, further observations, showing that ZnO (an rc-type semi-conductor) inhibited the reaction and that CdO (also an rc-type semi-conductor) catalyzed the reaction, were not consistent with this explanation. It was noted, however, that both NiO and CdO could be reduced by the product caesium metal, whereas ZnO is not, and that the reaction with NiO yielded caesium oxide, which is identified as the active catalyst. Detailed kinetic data for these rate processes are not available but the pattern of behaviour described clearly demonstrates that the interface reactions were more complicated than had been anticipated. [Pg.266]

The catalytic pyrolysis of R22 over metal fluoride catalysts was studied at 923K. The catalytic activities over the prepared catalysts were compared with those of a non-catalytic reaction and the changes of product distribution with time-on-stream (TOS) were investigated. The physical mixture catalysts showed the highest selectivity and yield for TFE. It was found that the specific patterns of selectivity with TOS are probably due to the modification of catalyst surface. Product profiles suggest that the secondary reaction of intermediate CF2 with HF leads to the formation of R23. [Pg.233]

Figure 3. Hydrogen TPD patterns observed on Figure 4. Amoimt of adsorbed H and a reduced RuS2 catalyst. catalytic activity (at 273K) versus the degree... Figure 3. Hydrogen TPD patterns observed on Figure 4. Amoimt of adsorbed H and a reduced RuS2 catalyst. catalytic activity (at 273K) versus the degree...
A comparison of various metals as catalysts for the hydrogenolysis of hydrocarbons reveals a wide variation in catalytic activity, even among such closely related metals as the noble metals of group VIII of the periodic table. Striking differences in the distribution of hydrogenolysis products have also been revealed in studies on selected hydrocarbon reactants. These features are emphasized in the following discussion of activity patterns and product distributions in hydrogenolysis. [Pg.97]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

The activity of the transition metals, especially for the chemisorption of molecular hydrogen and in hydrogenation reactions has been correlated, in the past, with the existence of partially filled d bands. Many alloy studies were prompted by the expectation that catalytic activity would change abruptly once these vacancies were filled by alloying with a group IB metal. Examples of such behavior have been collected together for the Pd-Au system (1). It is to be expected also that various complications might superimpose on the simple activity patterns observed for primitive... [Pg.115]

It was claimed that this model helps to explain earlier catalytic results using Cu-Ni alloys, but comparisons with alloys in granular, or other massive form, are difficult. The available catalytic results on Cu-Ni alloys show that the method of preparation of the catalyst can have a profound influence upon the observed activity pattern. The promoting effect on the catalytic activity, caused by cooling in hydrogen rather than in vacuum... [Pg.151]

The olefin binding site is presumed to be cis to the carbene and trans to one of the chlorides. Subsequent dissociation of a phosphine paves the way for the formation of a 14-electron metallacycle G which upon cycloreversion generates a pro ductive intermediate [ 11 ]. The metallacycle formation is the rate determining step. The observed reactivity pattern of the pre-catalyst outlined above and the kinetic data presently available support this mechanistic picture. The fact that the catalytic activity of ruthenium carbene complexes 1 maybe significantly enhanced on addition of CuCl to the reaction mixture is also very well in line with this dissociative mechanism [11] Cu(I) is known to trap phosphines and its presence may therefore lead to a higher concentration of the catalytically active monophosphine metal fragments F and G in solution. [Pg.51]

It should be added that MS-02 is not necessarily a mono-nuclear complex. It could be shown in a few cases that the catalytic activity of the metal ion is due to the formation of dinuclear metal-substrate complexes. Presumably in these species each oxygen atom of dioxygen coordinates to a different metal center. Such systems were extensively used to model the reactivity patterns of various enzymes containing a bimetallic active center. [Pg.399]

The model shown in Scheme 2 indicates that a change in the formal oxidation state of the metal is not necessarily required during the catalytic reaction. This raises a fundamental question. Does the metal ion have to possess specific redox properties in order to be an efficient catalyst A definite answer to this question cannot be given. Nevertheless, catalytic autoxidation reactions have been reported almost exclusively with metal ions which are susceptible to redox reactions under ambient conditions. This is a strong indication that intramolecular electron transfer occurs within the MS"+ and/or MS-O2 precursor complexes. Partial oxidation or reduction of the metal center obviously alters the electronic structure of the substrate and/or dioxygen. In a few cases, direct spectroscopic or other evidence was reported to prove such an internal charge transfer process. This electronic distortion is most likely necessary to activate the substrate and/or dioxygen before the actual electron transfer takes place. For a few systems where deviations from this pattern were found, the presence of trace amounts of catalytically active impurities are suspected to be the cause. In other words, the catalytic effect is due to the impurity and not to the bulk metal ion in these cases. [Pg.400]

Reports by Li and Zuberbuhler were in support of the formation of Cu(I) as an intermediate (16). It was confirmed that Cu(I) and Cu(II) show the same catalytic activity and the reaction is first-order in [Cu(I) or (II)] and [02] in the presence of 0.6-1.5M acetonitrile and above pH 2.2. The oxygen consumption deviated from the strictly first-order pattern at lower pH and the corresponding kinetic traces were excluded from the evaluation of the data. The rate law was found to be identical with the one obtained for the autoxidation of Cu(I) in the absence of Cu(II) under similar conditions (17). Thus, the proposed kinetic model is centered around the reduction of Cu(II) by ascorbic acid and reoxidation of Cu(I) to Cu(II) by dioxygen ... [Pg.406]

In addition to the characteristic XRD patterns and photoluminescence, UV-visible and X-ray absorption spectra, another fingerprint thought to indicate lattice substitution of titanium sites was the vibrational band at 960 cm-1, which has been recorded by infrared and Raman spectroscopy (33,34). Although there is some controversy about the origin of this band, its presence is usually characteristic of a good TS-1 catalyst, although it turned out to be experimentally extremely difficult to establish quantitative correlations between the intensity of the 960 cm-1 band and the Ti content of a Ti silicate and/or its catalytic activity. [Pg.40]

Zn/AljOj catalysts, 31 249 -Zn/Cr Oj catalysts, 31 250 -ZnO/AljO, 31 276, 292-295 -ZnO binary catalyst, 31 257-287 activity patterns, 31 271-274 BET argon surface areas, 31 259 calcination, 31 261-262 catalytic testing, 31 272 chemisorption, 31 268-271 CO2 effects, selectivity, 31 284-285 color spectra, 31 259-261 component comparison, 31 258-259 methanol synthesis, 31 246-247 modifiers, weakening of adsorption energy, 31 283... [Pg.81]

A different approach was followed by Blackledge et al. [124]. They used the catalytic activity of a palladium coated SPM-tip to selectively generate a pattern into different co-functionalized SAMs. [Pg.393]


See other pages where Catalytic activity pattern is mentioned: [Pg.30]    [Pg.30]    [Pg.168]    [Pg.91]    [Pg.886]    [Pg.266]    [Pg.323]    [Pg.579]    [Pg.615]    [Pg.155]    [Pg.628]    [Pg.255]    [Pg.115]    [Pg.156]    [Pg.6]    [Pg.92]    [Pg.100]    [Pg.101]    [Pg.101]    [Pg.108]    [Pg.109]    [Pg.116]    [Pg.285]    [Pg.156]    [Pg.158]    [Pg.28]    [Pg.322]    [Pg.72]    [Pg.10]    [Pg.272]    [Pg.17]    [Pg.84]    [Pg.306]    [Pg.314]   
See also in sourсe #XX -- [ Pg.453 ]




SEARCH



Activity patterns

Catalytic reactions, activity patterns

© 2024 chempedia.info