Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts for nitration

Table 3. Comparison of regio-selectivity of different catalysts for nitration of toluene... Table 3. Comparison of regio-selectivity of different catalysts for nitration of toluene...
The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst environment. Instead, the Fe center can influence a catalytic asymmetric process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. This interaction is often comparable to the stabilization of a-ferrocenylcarbocations 3 (see Sect. 1) making use of the electron-donating character of the Cp2Fe moiety, but can also be reversed by the formation of feirocenium systems thereby increasing the acidity of a directly attached Lewis acid. Alternative applications in asymmetric catalysis, for which the interaction of the Fe center and the catalytic center is less distinct, have recently been summarized in excellent extensive reviews and are outside the scope of this chapter [48, 49], Moreover, related complexes in which one Cp ring has been replaced with an ri -arene ligand, and which have, for example, been utilized as catalysts for nitrate or nitrite reduction in water [50], are not covered in this chapter. [Pg.152]

Gomez Arrayas R, Adrio J, Carretero JC (2006) Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed 45 7674—7715 Dai LX, Hou XL (2010) Chiral ferrocenes in asymmetric catalysis. Wiley-VCH, Weinheim Rigaut S, Delville MH, Losada J, Astrac D (2002) Water-soluble mono- and star-shaped hexanuclear functional organoiron catalysts for nitrate and nitrite reduction in water syntheses and electroanalytical study. Inorg Chim Acta 334 225-242... [Pg.172]

Pronkin SN, Simonov PA, Zaikovskii VI, Savinova ER. 2007. Model Pd-based bimetallic supported catalysts for nitrate electroreduction. J Mol Catal A 265 141-147. [Pg.562]

S04 7Zr02i AN EFFICIENT CATALYST FOR NITRATION OF CHLOROBENZENE TO CHLORONITROBENZENE. [Pg.247]

Sulphated zirconia can be used as an efficient catalyst for nitration chlorobenzene. The Bronsted as well as Lewis acid sites present on it s surface are responsible for high yield and regioselective. [Pg.250]

Nitrations. Sulfuric acid on silica gel is an inexpensive catalyst for nitration. For nitration of strongly deactivated arenes, the mixture of HN03/2CF3S03H-B(0Tf)3 is... [Pg.228]

Note that metal halides such as FeBrj and AICI3 are catalysts for halogenation and alkylation, and sulfuric acid is a catalyst for nitration. These reactions do not contradict the earlier discussion on the high stability of the aromatic structure. The aromatic structure is intact after these reactions. All of the reagents in these reactions bring about addition to alkenes (including the nitration and alkylation reagents which were not previously discussed in Chap. 11), but there is no addition to the double bonds in benzene, only substitution. [Pg.248]

Strukul G., Pinna F., MareUa M., Meregalli L. and Tomaselli M. 1996. Sol-gel palladium catalysts for nitrate and nitrite removal from drinking water, Catal. Today, 27, 209-214. [Pg.122]

Zaraisky. A.P. Kachurin. O.I. Velichko. L.H. TikJionova, I.A. Furin, G.G. Shur, V.B. Vol pin. M.E. Cyclic trimeric perfluoro-o-phenylenemercury as the phase transfer catalyst for nitration with dilute nitric acid. Izv. Akad. Nauk, Ser. Khim. 1994. 547-548. [Russ. Chem. Bull. 1994. 43. 507-508. (Engl. Transl.)]. [Pg.75]

MCM-41-supported metal (Yb, Zn) bis[(perfluoroalkyl)sulfonyl]imides were reported as effective catalysts for nitration of aromatic compounds with 1 eq. of 65 wt% nitric acid in the liquid phase Equation (8.68). The enhanced electron-drawing and steric effects from longer perfluori-nated alkyl chains were found to promote this action. Water exhibits also a positive effect. The catalysts were recycled without substantial loss of catalytic activity [103]. [Pg.267]

Adams catalyst, platinum oxide, Pt02 H20. Produced by fusion of H2PtCl6 with sodium nitrate at 500-550 C and leaching of the cooled melt with water. Stable in air, activated by hydrogen. Used as a hydrogenation catalyst for converting alkenes to alkanes at low pressure and temperature. Often used on Si02... [Pg.15]

Sulphuric acid catalysed nitration in concentrated nitric acid, but the effect was much weaker than that observed in nitration in organic solvents ( 3.2.3). The concentration of sulphuric acid required to double the rate of nitration of i-nitroanthraquinone was about 0-23 mol 1, whereas typically, a concentration of io mol 1 will effect the same change in nitration in mixtures of nitric acid and organic solvents. The acceleration in the rate was not linear in the concentration of catalyst, for the sensitivity to catalysis was small with low concentrations of sulphuric acid, but increased with the progressive addition of more catalyst and eventually approached a linear acceleration. [Pg.8]

Acid—Base Chemistry. Acetic acid dissociates in water, pK = 4.76 at 25°C. It is a mild acid which can be used for analysis of bases too weak to detect in water (26). It readily neutralizes the ordinary hydroxides of the alkaU metals and the alkaline earths to form the corresponding acetates. When the cmde material pyroligneous acid is neutralized with limestone or magnesia the commercial acetate of lime or acetate of magnesia is obtained (7). Acetic acid accepts protons only from the strongest acids such as nitric acid and sulfuric acid. Other acids exhibit very powerful, superacid properties in acetic acid solutions and are thus useful catalysts for esterifications of olefins and alcohols (27). Nitrations conducted in acetic acid solvent are effected because of the formation of the nitronium ion, NO Hexamethylenetetramine [100-97-0] may be nitrated in acetic acid solvent to yield the explosive cycl o trim ethyl en etrin itram in e [121 -82-4] also known as cyclonit or RDX. [Pg.66]

Nitrates. Iron(II) nitrate hexahydrate [14013-86-6], Fe(N03)2 6H20, is a green crystalline material prepared by dissolving iron in cold nitric acid that has a specific gravity of less than 1.034 g/cm. Use of denser, more concentrated acid leads to oxidation to iron(III). An alternative method of preparation is the reaction of iron(II) sulfate and barium or lead nitrate. The compound is very soluble in water. Crystallisation at temperatures below — 12°C affords an nonahydrate. Iron(II) nitrate is a useful reagent for the synthesis of other iron-containing compounds and is used as a catalyst for reduction reactions. [Pg.437]

Zeohtes have recendy been employed as soHd catalysts for the vapor-phase nitration of aromatics with nitric acid. Additional research is required to improve yields and to niinimi2e loss of catalytic activity as the nitration progresses (see Molecularsieves). [Pg.34]

Unpiotonated hydioxylamine is oxidized rapidly by ozone, / = 2.1 X 10 (39). The reaction of ozone with the lower oxides of nitrogen (NO and NO2) is also rapid and quantitative the end product is nitrogen pentoxide, which is also a catalyst for the decomposition of ozone (45). Nitrous oxide, however, reacts slowly (k < 10 ) (39). Nitrogen-containing anions, eg, nitrite and cyanide, also ate oxidized by ozone (39). Nitrite is oxidized to nitrate (fc = 3.7 X 10 and cyanide is oxidized rapidly to cyanate (fc = 2.6 X 10 (46) and 10 -10 (39)). Cyanate, however, is oxidized slowly. [Pg.492]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]

They may require pH adjustment and settling. These effluents should preferably be recycled or reused. Spent catalysts are usually sent for regeneration or disposed of in a secure landfill. Air emissions should be monitored aimually, except for nitrate acid plants, where nitrogen oxides should be monitored continuously. [Pg.67]

Tnflic acid is an excellent catalyst for the nitration of aromatic compounds [.S7]. In a mixture with nitnc acid, it forms the highly electrophilic nitronium inflate, which can be isolated as a white crystalline solid Nitronium inflate is a powerful nitrating reagent in inert organie solvents and in tnflic acid or sulfuric acid. It nitrates benzene, toluene, chlorobenzene, nitrobenzene, m-xylene, and benzotn-fluoride quantitatively in the temperature range of-110 to 30 °C with exeeptionally high positional selectivity [87],... [Pg.956]

Neopentyl alcohol, 40, 76 Nickel catalyst for hydrogenation of resorcinol, 41, 56, 57 Nitramines from amines and acetone cyanohydrin nitrate, 43, 84 Nitration, of amines to nitramines by acetone cyanohydrin nitrate, 43, 83... [Pg.118]

Hydrogenation reactions, particularly for the manufacture of fine chemicals, prevail in the research of three-phase processes. Examples are hydrogenation of citral (selectivity > 80% [86-88]) and 2-butyne-l,4-diol (conversion > 80% and selectivity > 97% [89]). Eor Pt/ACE the yield to n-sorbitol in hydrogenation of D-glucose exceeded 99.5% [90]. Water denitrification via hydrogenation of nitrites and nitrates was extensively studied using fiber-based catalysts [91-95]. An attempt to use fiber-structured catalysts for wet air oxidation of organics (4-nitrophenol as a model compound) in water was successful. TOC removal up to 90% was achieved [96]. [Pg.202]

Keggin type H3PW)2O40 is a stable, recyclable and effective catalyst for H2S04-free liquid phase nitration of bezene, chlorobenzene and toluene with nitric acid as a nitration agent. Higher para-selectivity of nitrotoluene was obtained, and the result implies that HPA can effectively catalyze the liquid phase nitration of various aromatics as an environmentally friendly nitration process. [Pg.356]

Since the formation of NO2 can occur homogeneously, it was of interest to establish whether adsorbed NO could be oxidized. NO was adsorbed at 225 C, after which the infrared cell was purged with He and subsequently a stream of 10.1% O2 in He was allowed to flow over the catalyst. Prior to the introduction of the 02-containing stream, the only features evident were those for mono- and dinitrosyls. In the presence of O2 at 225 °C, the intensities of the bands for both mono- and dinitrosyl species attenuated and new features appeared at 1628 and 1518 cm-, corresponding to nitrate and nitrito species, respectively. A similar experiment carried out in the absence of O2, showed only a small decrease in the intensity of the nitrosyl bands due to NO desorption and the absence of bands for nitrate and nitrito species during a 30 min purge in He at 225 °C. [Pg.666]


See other pages where Catalysts for nitration is mentioned: [Pg.242]    [Pg.9]    [Pg.106]    [Pg.116]    [Pg.237]    [Pg.242]    [Pg.9]    [Pg.106]    [Pg.116]    [Pg.237]    [Pg.872]    [Pg.427]    [Pg.165]    [Pg.437]    [Pg.70]    [Pg.114]    [Pg.36]    [Pg.395]    [Pg.3]    [Pg.956]    [Pg.195]    [Pg.941]    [Pg.697]    [Pg.229]    [Pg.872]    [Pg.380]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



© 2024 chempedia.info