Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts factors affecting

Wang Shenlong et al. (1984) prepared a copolymer of ethylene and butadiene with rare earth coordination catalysts. Factors affecting the copolymerization reaction, such as the variation of the monomer ratio, aluminum alkyl, ligand and rare earth element, have been investigated. It was found that the catalytic activity of various ligands and rare earth elements in copolymerization have the following order ... [Pg.420]

Cost and Quality. Many factors affect catalyst support cost including which raw materials are used, the purity of the raw materials, the chemical processing steps required, the fabrication method used, the severity of calcination conditions, and the extent of the quaHty assurance procedure. In... [Pg.194]

The most important factors affecting performance are operating temperature, surface velocity, contaminant concentration and composition, catalyst properties, and the presence or absence of poisons or inhibitors. [Pg.514]

Factors affecting laboratory polymerisation of the monomer have been discussed" and these indicate that a Ziegler-Natta catalyst system of violet TiCl3 and diethyl aluminium chloride should be used to react the monomer in a hydrocarbon diluent at atmospheric pressure and at 30-60°C. One of the aims is to get a relatively coarse slurry from which may be washed foreign material such as catalyst residues, using for example methyl alcohol. For commercial materials these washed polymers are then dried and compounded with an antioxidant and if required other additives such as pigments. [Pg.270]

Catalyst circulation is like blood circulation to the human body. Without proper catalyst circulation, the unit is dead. Troubleshooting circulation problems requires a good understanding of the pressure balance around the reactor-regenerator circuit and the factors affecting catalyst fluidization. The fundamentals of fluidization and catalyst circulation are discussed in Chapter 5. [Pg.236]

Slip factor is defined as the ratio of catalyst residence time in the riser to the hydrocarbon vapor residence time. Some of the factors affecting the slip factor are circulation rate, riser diameter/geometry, and riser velocity. [Pg.242]

The factors affecting the preparation of the cyclic chlorophosphazenes from phosphorus pentachloride and ammonium chloride continue to receive attention. For example, the yields and reaction times for the preparation of the series, (NPCla) ( — 3—7), varied with the fineness of the ammonium chloride, the nature and volume of the solvent, and added catalysts such as phosphoryl chloride. A procedure, giving due consideration to these factors, was described for the preparation of N3P3CI6 in good yield (88% of cyclic products) and in a relatively short time (2J h). The cyclic chlorophosphazenes can be obtained in even shorter times ca. 10 min) by addition of four moles of pyridine to remove the hydrogen chloride formed ... [Pg.211]

In the present work, the transient reaetivity and the ehanges of the snrface charaeteristies of an eqnihbrated VPP in response to modifications of the gas-phase composition have been investigated. As the VN atomic ratio is one of the most important factors affecting the catalytic performance of the VPP (6), two catalysts differing in VN ratio were stndied. Data obtained were used to draw a model about the nature of the surface active layer, and on how die latter is modified in function of the reaction conditions. [Pg.486]

Another important factor affecting carbon deposition is the catalyst surface basicity. In particular, it was demonstrated that carbon formation can be diminished or even suppressed when the metal is supported on a metal oxide carrier with a strong Lewis basicity [47]. This effect can be attributed to the fact that high Lewis basicity of the support enhances the C02 chemisorption on the catalyst surface resulting in the removal of carbon (by surface gasification reactions). According to Rostrup-Nielsen and Hansen [12], the amount of carbon deposited on the metal catalysts decreases in the following order ... [Pg.60]

To achieve highly sensitive detection, optimization of various factors affecting the CL reaction is required. Reaction temperature, pH, solvent, nature of CL compounds, and coexisting compounds such as a catalyst and an enhancer affect the CL reaction yield. [Pg.402]

The trans/cis ratio of the product must, therefore, be determined at an earlier reaction stage and most probably by the ratio of species 27a and 27b. Steric or electronic factors affecting this ratio will influence the trans/cis ratio of the resulting 1,4-hexadiene. The phosphine and the cocatalyst effect on the stereoselectivity can thus be interpreted in terms of their influence on the mode of butadiene coordination. Some earlier work on the stereospecific synthesis of polybutadiene by Ni catalyst can be adopted to explain the effect observed here, because the intermediates that control the stereospecificity of the polymerization should be essen-... [Pg.305]

We first present further examples of the types of reactions involved in two main classifications, and then a preliminary discussion of various types of reactors used. Following an examination of some factors affecting the choice of reactor, we develop design equations for some reactor types, and illustrate their use with examples. The chapter concludes with a brief introduction to trickle-bed reactors for three-phase gas-liquid-solid (catalyst) reactions. [Pg.599]

The chemical behaviour of the resulting catalyst is affected by four main factors ... [Pg.119]

The object of this review was to show how Kurz s approach to quantifying transition state stabilization is useful in the discussion of the kinetic effects of cyclodextrins on organic reactions, while at the same time pointing out its comparable utility for various other types of catalyst. It is hoped that the approach gains wider acceptance and employment since it provides a framework for the discussion of factors affecting transition state stability in both catalysed and retarded reactions. [Pg.62]

The unique ability of crown ethers to form stable complexes with various cations has been used to advantage in such diverse processes as isotope separations (Jepson and De Witt, 1976), the transport of ions through artificial and natural membranes (Tosteson, 1968) and the construction of ion-selective electrodes (Ryba and Petranek, 1973). On account of their lipophilic exterior, crown ether complexes are often soluble even in apolar solvents. This property has been successfully exploited in liquid-liquid and solid-liquid phase-transfer reactions. Extensive reviews deal with the synthetic aspects of the use of crown ethers as phase-transfer catalysts (Gokel and Dupont Durst, 1976 Liotta, 1978 Weber and Gokel, 1977 Starks and Liotta, 1978). Several studies have been devoted to the identification of the factors affecting the formation and stability of crown-ether complexes, and many aspects of this subject have been discussed in reviews (Christensen et al., 1971, 1974 Pedersen and Frensdorf, 1972 Izatt et al., 1973 Kappenstein, 1974). [Pg.280]

Pilati, F., Toselli, M., Messori, M., Manzoni, C., Turturro, A. E. and Gat-tiglia, E. G., On specific factors affecting the crystallization of PET the role of carboxyl terminal groups and residual catalysts on the crystallization rate, Polymer, 38, 4469 (1997). [Pg.559]

For both reactions to occur, a three-phase boundary is required where the reactant gas, protons, and electrons react at the catalyst surface. The CLs should be able to facilitate transport of protons, electrons, and gases to the catalytic sites. Under normal PEM fuel cell operating conditions (<80°C), the reactants are gaseous phase H2 and O2 (from air), and the product is water, primarily in the liquid phase. Water removal is a key factor affecting catalyst... [Pg.62]

In order to make catalyst layers with high platinum utilization and better performance, we need to determine how various factors affect Pt utilization. Although this objective has been receiving more attention, we have not achieved a fundamental understanding of the relationships of composition, structure, effective properties, and fuel cell performance—a fact that may limit the optimal design and fabrication of CLs. [Pg.96]

Many factors affect the rate and extent of coal liquefaction, including temperature, hydrogen partial pressure, residence time, coal type and analysis, solvent properties, solvent-to-coal ratio, ash composition, and the presence or absence of a catalyst. Many kinetic expressions have appeared in the literature, but since they are generally specific to a particular process, they will not be listed here. In general, liquefaction is... [Pg.17]

Rohrbaugh, W.J. andWu, E.L (1989) Factors affecting X-ray diffraction characteristics of catalyst materials. ACS Symp. Ser., 411, 279-302. [Pg.160]

Since the mode of mixing of monomers with their catalysts profoundly affects product distribution, great importance must be paid to this factor if the product is to have the desired physical and chemical properties. Denbigh (1947, 1951) considered some of the many aspects of this problem, and Fig. 8.16 shows for various kinetics how reactor type influences the molecular weight distribution of products. [Pg.193]


See other pages where Catalysts factors affecting is mentioned: [Pg.15]    [Pg.118]    [Pg.225]    [Pg.618]    [Pg.613]    [Pg.281]    [Pg.356]    [Pg.23]    [Pg.171]    [Pg.99]    [Pg.348]    [Pg.65]    [Pg.619]    [Pg.59]    [Pg.269]    [Pg.294]    [Pg.92]    [Pg.1]    [Pg.276]    [Pg.123]    [Pg.61]    [Pg.70]    [Pg.259]    [Pg.83]    [Pg.174]   
See also in sourсe #XX -- [ Pg.196 , Pg.239 ]




SEARCH



Catalyst factor)

Factors Affecting the Performance of a Carbon Catalyst

Factors affecting reaction rate catalysts

Factors which Affect the Catalyst Performance

The Economic Factors and Constraints Affecting Catalyst Choice

© 2024 chempedia.info