Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts, Additive and Solvents

In most polymerization examples, Pd(OAc)2 was used as the palladium catalyst. Some research groups have exploited the highly stable Herrmann-Beller catalyst. Catalytic addition of pivalic acid can aid the C-H activation. Some groups have found that polymerization in the absence of phosphine ligand can give high molecular weight materials. [Pg.20]

Polar (dimethylacetamide (DMAC), DMF, NMP, THF) and nonpolar (toluene) solvents are suitable for these reactions and should be selected according to the polymer solubility. DMAc is not a suitable solvent for polymerization and always gives brown soluble material. Addition of carboxylic acid may be beneficial in nonpolar solvents owing to the high polarity of the C-H bond transition states. However, C-H bond activations have been accomplished in toluene and xylenes without carboxylic acids.  [Pg.21]


Catalyst, additives, and solvents Waste handling Raw materials... [Pg.193]

Palladium complexes exhibit even higher catalytic activity and produce branched acids preferentially.132 133 The selectivity, however, can be shifted to the formation of linear acids by increasing the phosphine concentration.134 Temperature, catalyst concentration, and solvent may also affect the isomer ratio.135 Marked increase in selectivity was achieved by the addition of Group IVB metal halides to palladium136 and platinum complexes.137 Linear acids may be prepared with selectivities up to 99% in this way. The formic acid-Pd(OAc)2-l,4-bis(diphe-nylphosphino)butane system has been found to exhibit similar regioselectivities.138 Significant enhancements of catalytic activity of palladium complexes in car-bomethoxylation by use of perfluoroalkanesulfonic acid resin cocatalysts was reported.139,140... [Pg.382]

Different conditions (including additives and solvent) for the reaction have been reported,often focusing on the palladium catalyst itself," or the ligand." Catalysts have been developed for deactivated aryl chlorides," and nickel catalysts have been used." Modifications to the basic procedure include tethering the aryl triflate or the boronic acid to a polymer, allowing a polymer-supported Suzuki reaction. Polymer-bound palladium complexes have also been used." " The reaction has been done neat on alumina," and on alumina with microwave irradiation." Suzuki coupling has also been done in ionic liquids," in supercritical... [Pg.900]

Most of the previous studies on the hydrosilylation of alkenes catalysed by Rh, used trialkylsilanes as substrate. More specifically when styrene was used as a reagent, it gives a mixture of hydrosilylation and reduction products, i.e. ethylbenzene (3) and the Markovnikov addition of silane product (2), in different proportions depending of the catalyst, silane and solvent. Scheme 1). [Pg.502]

The addition of E-H bonds to unsaturated substrates is one of the most useful ways to prepare materials containing carbon-heteroelement bonds. This class of reactions also represents a very efficient use of reagents since every atom in the reagents is incorporated into the products. Although atom efficient in terms of substrate, a number of these processes require the use of additives or catalysts. This section will focus on how those additives and solvents can be minimized or eliminated through microwave-assisted hydroelementation reactions. [Pg.27]

Ligand, Additive, and Solvent Effects in Palladium Catalysis - Mechanistic Studies En Route to Catalyst Design... [Pg.69]

In a manner largely complementary to secondary amine-catalyzed asymmetric conjugate addition to enals with heteroatom nucleophiles, chiral primary amines were recently found to be the catalysts of choice for similar Michael addition to a,p-unsaturated ketones. With their previously developed cinchona-type catalyst 91, Melchiorre and coworkers achieved the asymmetric sulfa-Michael addition to a,p-unsaturated ketones with either benzyl or tert-butyl mercaptane (Scheme 5.30) [58a]. The same catalyst could be further extended to oxa-Michael addition to enones by optimizing the ratio of acidic additive and solvents (Scheme 5.30) [58b]. [Pg.165]

Gels. Fluorosihcone fluids with vinyl functionahty can be cured using the platinum catalyst addition reactions. The cure can be controlled such that a gel or a soft, clear, jelly-like form is achieved. Gels with low (12% after 7 d) swell in gasoline fuel are useflil (9) to protect electronics or circuitry from dust, dirt, fuels, and solvents in both hot (up to 150°C) and cold (down to —65° C) environments. Apphcations include automotive, aerospace, and electronic industries, where harsh fuel—solvent conditions exist while performance requirements remain high. [Pg.401]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

Shell Higher Olefins Process (SHOP). In the Shell ethylene oligomerization process (7), a nickel ligand catalyst is dissolved in a solvent such as 1,4-butanediol (Eig. 4). Ethylene is oligomerized on the catalyst to form a-olefins. Because a-olefins have low solubiUty in the solvent, they form a second Hquid phase. Once formed, olefins can have Htfle further reaction because most of them are no longer in contact with the catalyst. Three continuously stirred reactors operate at ca 120°C and ca 14 MPa (140 atm). Reactor conditions and catalyst addition rates allow Shell to vary the carbon distribution. [Pg.439]

Two-component systems consist of (1) polyol or polyamine, and (2) isocyanate. The hardening starts with the mixing of the two components. Due to the low viscosities of the two components, they can be used without addition of solvents. The mass ratio between the two components determines the properties of the bond line. Linear polyols and a lower surplus of isocyanates give flexible bond lines, whereas branched polyols and higher amounts of isocyanates lead to hard and brittle bond lines. The pot life of the two-component systems is determined by the reactivity of the two components, the temperature and the addition of catalysts. The pot life can vary between 0.5 and 24 h. The cure at room temperature is completed within 3 to 20 h. [Pg.1069]

For a reaction as complex as catalytic enantioselective cyclopropanation with zinc carbenoids, there are many experimental variables that influence the rate, yield and selectivity of the process. From an empirical point of view, it is important to identify the optimal combination of variables that affords the best results. From a mechanistic point of view, a great deal of valuable information can be gleaned from the response of a complex reaction system to changes in, inter alia, stoichiometry, addition order, solvent, temperature etc. Each of these features provides some insight into how the reagents and substrates interact with the catalyst or even what is the true nature of the catalytic species. [Pg.127]

However, it should be mentioned that the dissolution process of a solid, crystalline complex in an (often relatively viscous) ionic liquid can sometimes be slow. This is due to restricted mass transfer and can be speeded up either by increasing the exchange surface (ultrasonic bath) or by reducing the ionic liquid s viscosity. The latter is easily achieved by addition of small amounts of a volatile organic solvent that dissolves both the catalyst complex and the ionic liquid. As soon as the solution is homogeneous, the volatile solvent is then removed in vacuo. [Pg.214]

Both reactions were carried out under two-phase conditions with the help of an additional organic solvent (such as iPrOH). The catalyst could be reused with the same activity and enantioselectivity after decantation of the hydrogenation products. A more recent example, again by de Souza and Dupont, has been reported. They made a detailed study of the asymmetric hydrogenation of a-acetamidocin-namic acid and the kinetic resolution of methyl ( )-3-hydroxy-2-methylenebu-tanoate with chiral Rh(I) and Ru(II) complexes in [BMIM][BF4] and [BMIM][PFg] [55]. The authors described the remarkable effects of the molecular hydrogen concentration in the ionic catalyst layer on the conversion and enantioselectivity of these reactions. The solubility of hydrogen in [BMIM][BF4] was found to be almost four times higher than in [BMIM][PFg]. [Pg.231]

In cases in which product solubility in the ionic liquid and the product s boiling point are high, the extraction of the product from the ionic liquid with an additional organic solvent is frequently proposed. This approach often suffers from some catalyst losses (due to some mutual solubility) and causes additional steps in the workup. Moreover, the use of an additional, volatile extraction solvent may nullify the green solvent motivation to use ionic liquids as nonvolatile solvents. [Pg.281]


See other pages where Catalysts, Additive and Solvents is mentioned: [Pg.107]    [Pg.34]    [Pg.422]    [Pg.20]    [Pg.107]    [Pg.34]    [Pg.422]    [Pg.20]    [Pg.539]    [Pg.573]    [Pg.361]    [Pg.467]    [Pg.178]    [Pg.15]    [Pg.461]    [Pg.394]    [Pg.908]    [Pg.2226]    [Pg.378]    [Pg.27]    [Pg.126]    [Pg.563]    [Pg.257]    [Pg.583]    [Pg.230]    [Pg.388]    [Pg.328]    [Pg.374]    [Pg.425]    [Pg.520]    [Pg.195]    [Pg.170]    [Pg.2378]    [Pg.360]    [Pg.873]    [Pg.278]   


SEARCH



Additives and Catalysts

Catalyst additives

Catalysts addition and

Solvent addition

© 2024 chempedia.info