Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst throughput

The need for low levels of 3-isomer in 2-thiophenecarboxyhc acid [527-72-0] which is produced by oxidation of 2-acetylthiophene [88-15-3] and used in dmg appHcations, has been the driving force to find improved acylation catalysts. The most widely used oxidant is sodium hypochlorite, which produces a quantity of chloroform as by-product, a consequence that detracts from its simplicity. Separation of the phases and acidification of the aqueous phase precipitate the product which is filtered off. Alternative oxidants have included sodium nitrite in acid solution, which has some advantages, but, like the hypochlorite method, also involves very dilute solutions and low throughput volumes. [Pg.21]

S. Bhattacharyya, Polymer-supported reagents and catalysts Recent advances in synthetic applications. Comb Chem High Throughput Screening 3 65-92 2000. [Pg.79]

H. Wennemers, Combinatorial chemistry A tool for the discovery of new catalysts. Comb Chem High Throughput Screening 4 273-285 2001. [Pg.79]

Permissible gas velocities are usually set by entrainment, and for a given throughput the vessel diameter is thus determined. The amount of catalyst or other bed particles is set by reaction kinetics and the bubble-solids contacting expected. Very often there is a scale-up debit involved in fluid bed reactors. As mentioned earlier, small reactors... [Pg.43]

In the context of industrial compressors, dust is a major consideration. Such compressors have a very high throughput of air, and even in apparently clean atmospheres, the quantity of airborne dirt is sufficient to cause trouble if the compressor is not fitted with an air-intake filter. Many of the airborne particles in an industrial atmosphere are abrasive, and they cause accelerated rates of wear in any compressor with sliding components in the compressor chamber. The dirt passes into the oil, where it may accumulate and contribute very seriously to the carbon deposits in valves and outlet pipes. Another consideration is that dirt in oil is likely to act as a catalyst, thus encouraging oxidation. [Pg.877]

Catalytic kinetic resolution can be the method of choice for the preparation of enantioenriched materials, particularly when the racemate is inexpensive and readily available and direct asymmetric routes to the optically active compounds are lacking. However, several other criteria-induding catalyst selectivity, efficiency, and cost, stoichiometric reagent cost, waste generation, volumetric throughput, ease of product isolation, scalability, and the existence of viable alternatives from the chiral pool (or classical resolution)-must be taken into consideration as well... [Pg.250]

A more steadily performing catalyst, requiring less attention and less frequent replacement, could permit a reduction in the semivariable costs for manning and maintenance stores. In the case of a catalyst system requiring frequent regeneration by burning off, a decrease in the carbon laydown (and consequent decrease in necessary burn-off frequency) may both increase throughput and reduce conversion costs. [Pg.233]

A gas-liquid-particle process termed cold hydrogenation has been developed for this purpose. The hydrogenation is carried out in fixed-bed operation, the liquefied hydrocarbon feed trickling downwards in a hydrogen atmosphere over the solid catalyst, which may be a noble metal catalyst on an inert carrier. Typical process conditions are a temperature of 10°-20°C and a pressure of 2.5-7 atm gauge. The hourly throughput is as high as 20-kg hydrocarbon feed per liter of catalyst volume. [Pg.74]

In batch or semi-batch polymerization processes it is often desirable to add a "chaser catalyst" towards the end of the reaction to reduce the residual monomer concentration to acceptable levels. The ability of the catalyst to reduce the monomer concentraion to low levels (ca 0.10 vol%) is of considerable importance for economic, envirorunental and physiological reasons. The chaser catalyst addition reduces processing time and increases throughput (Kamath and Sargent (1987)). [Pg.321]

Active heterogeneous catalysts have been obtained. Examples include titania-, vanadia-, silica-, and ceria-based catalysts. A survey of catalytic materials prepared in flames can be found in [20]. Recent advances include nanocrystalline Ti02 [24], one-step synthesis of noble metal Ti02 [25], Ru-doped cobalt-zirconia [26], vanadia-titania [27], Rh-Al203 for chemoselective hydrogenations [28], and alumina-supported noble metal particles via high-throughput experimentation [29]. [Pg.122]

Surface area is one of the most important factors in determining throughput (amount of reactant converted per unit time per unit mass of catalyst). Many modem inorganic supports have surface areas of 100 to >1000 m g The vast majority of this area is due to the presence of internal pores these pores may be of very narrow size distribution to allow specific molecular sized species to enter or leave, or of a much broader size distribution. Materials with an average pore size of less than 1.5-2 nm are termed microporous whilst those with pore sizes above this are called mesoporous materials. Materials with very large pore sizes (>50 nm) are said to be macroporous, (see Box 4.1 for methods of determining surface area and pore size). [Pg.88]

The catalyst used was zinc triflate supported on silica, which was glued onto the surface of the SDR. Although total conversion could be achieved in a single pass, selectivity was highly dependent on residence time, increasing with shorter times. In a direct comparison with a batch process using the same catalyst at the same conversion and residence time a 200 times increase in throughput could be obtained. [Pg.254]


See other pages where Catalyst throughput is mentioned: [Pg.54]    [Pg.144]    [Pg.54]    [Pg.144]    [Pg.88]    [Pg.100]    [Pg.400]    [Pg.458]    [Pg.508]    [Pg.286]    [Pg.72]    [Pg.86]    [Pg.377]    [Pg.815]    [Pg.350]    [Pg.62]    [Pg.993]    [Pg.219]    [Pg.221]    [Pg.232]    [Pg.233]    [Pg.320]    [Pg.219]    [Pg.34]    [Pg.130]    [Pg.21]    [Pg.41]    [Pg.109]    [Pg.127]    [Pg.233]    [Pg.265]    [Pg.110]    [Pg.156]    [Pg.144]    [Pg.148]    [Pg.243]    [Pg.284]    [Pg.285]    [Pg.2]    [Pg.851]   
See also in sourсe #XX -- [ Pg.51 , Pg.54 ]




SEARCH



Catalyst Discovery and Optimization via High-throughput Screening

Catalyst Discovery via High-Throughput Experimentation

High-Throughput Catalyst Characterization

High-Throughput Screening of Catalysts and Reactions

High-throughput catalyst preparation

High-throughput catalyst screenings

High-throughput catalyst testing

© 2024 chempedia.info