Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst supports carbon-based

Purity The purity of activated carbon is essential for the performance of the final catalyst. Impurities of activated carbon originate from the raw material and the process conditions. Ash contents of up to 20% can be possible. Wood-based activated carbons have ash contents as low as 1 wt% [7]. The ash content can be lowered further by acid treatment of the activated carbon [8]. Typically, the ash consists of alkaline and alkahne earth metal oxides, silicates, and smaller amounts of other compounds (e.g., iron). The presence of the alkaline and alkaline earth metal oxides makes those carbons more basic in nature, so that some additional adjustments are necessary during catalyst manufacturing to meet the constant quality requirements. Since the supports are used in catalysts, the presence of catalytically active compounds that could have a potential influence on the performance of the final catalyst has to be considered as well. For the manufacture of catalysts, activated carbon based on wood, peat, nut shells, and coconut are commonly used. Due to a relatively high sulfur content in activated carbons derived from coal, those carbons are typically not used as catalyst support. [Pg.538]

The membrane electrode assembly (MEA) is a delicate component in low-temperature fuel cells based on polymer electrolyte membranes. Its condition is affected by many factors (1) selection and preparation of MEA materials (catalysts, supporting carbon powder, membrane materials, binder for MEA hot pressing, etc.), (2) history of MEA usage, (3) fuel cell operation parameters, and so on. The resulting MEA condition exerts a strong influence on the fuel cell performance, which is also a function of running time. [Pg.342]

Surface structuring Dimensionality of nanomaterials can be extended from 0-D to higher dimensions, for example 0-D for spherical NP, 1-D for cylinders and 2-D for thin film structures. When fabricated on to a support material, the arrangement of nanomaterials forms an array or random structures, whose properties depends on the shape and type of the nanoprobe deposited. An array containing different nanomaterials deposited on the same support material can work as a multipurpose ensemble with each component serving its specific function. Nanomaterials that are being extensively explored as catalysts are carbon based materials, transition metals and their oxides, quantum dots and other materials. [Pg.343]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

Heterogeneous hydrogenation catalysts can be used in either a supported or an unsupported form. The most common supports are based on alurnina, carbon, and siUca. Supports are usually used with the more expensive metals and serve several purposes. Most importandy, they increase the efficiency of the catalyst based on the weight of metal used and they aid in the recovery of the catalyst, both of which help to keep costs low. When supported catalysts are employed, they can be used as a fixed bed or as a slurry (Uquid phase) or a fluidized bed (vapor phase). In a fixed-bed process, the amine or amine solution flows over the immobile catalyst. This eliminates the need for an elaborate catalyst recovery system and minimizes catalyst loss. When a slurry or fluidized bed is used, the catalyst must be separated from the amine by gravity (settling), filtration, or other means. [Pg.259]

Alkali-promoted Ru-based catalysts are expected to become the second generation NHs synthesis catalysts [1]. In 1992 the 600 ton/day Ocelot Ammonia Plant started to produce NH3 with promoted Ru catalysts supported on carbon based on the Kellogg Advanced Ammonia Process (KAAP) [2]. The Ru-based catalysts permit milder operating conditions compared with the magnetite-based systems, such as low synthesis pressure (70 -105 bars compared with 150 - 300 bars) and lower synthesis temperatures, while maintaining higher conversion than a conventional system [3]. [Pg.317]

PNNL has a long history studying hydrogenolysis as a means to form value-added products from sugar alcohols including glycerol. In this paper we will report on a subset of this work, focused on rhenium-based multi-metallic catalysts supported on carbon. [Pg.304]

Before preparing these carbon-supported Pt-based catalysts, a support pretreatment toward granular activated carbon with an aqueous solution of NaOH (pH 14) was carried out by immersing for 24 h to promote the anion exchange between the ligand chloride of impregnated metal precursers (K2PtCl4) and the aqueous hydroxide ion (OH ) inside the micropores of the activated carbon [33]. [Pg.443]

The feasibility of carbon-supported nickel-based catalysts as the alternative to the platinum catalyst is studied in this chapter. Carbon-supported nickel (Ni/C, 10 wt-metal% [12]), ruthenium (Ru/C, 10 wt-metal% [12]), and nickel-ruthenium composite (Ni-Ru/C, 10 wt-metal%, mixed molar ratio of Ni/Ru 0.25,1,4, 8, and 16 [12]) catalysts were prepared similarly by the impregnation method. Granular powders of the activated carbon without the base pretreatment were stirred with the NiCl2, RuC13, and NiCl2-RuCl3 aqueous solutions at room temperature for 24 h, respectively. Reduction and washing were carried out in the same way as done for the Pt/C catalyst. Finally, these nickel-based catalysts were evacuated at 70°C for 10 h. [Pg.452]

Although the FTS is considered a carbon in-sensitive reaction,30 deactivation of the cobalt active phase by carbon deposition during FTS has been widely postulated.31-38 This mechanism, however, is hard to prove during realistic synthesis conditions due to the presence of heavy hydrocarbon wax product and the potential spillover and buildup of inert carbon on the catalyst support. Also, studies on supported cobalt catalysts have been conducted that suggest deactivation by pore plugging of narrow catalyst pores by the heavy (> 40) wax product.39,40 Very often, regeneration treatments that remove these carbonaceous phases from the catalyst result in reactivation of the catalyst.32 Many of the companies with experience in cobalt-based FTS research report that these catalysts are negatively influenced by carbon (Table 4.1). [Pg.52]

Xiong, J., Ding, Y., Wang, T., Yan, L., Chen, W., Zhu, H., and Lu, Y. 2005. The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction. Catal. Lett. 102 265-69. [Pg.80]

The preparation of this type of catalyst is quite simple. HPAs such as phos-photungstic acid were adsorbed onto inorganic supports such as clays, alumina, and active carbon. Subsequently, the metal complex was added to form the immobilized catalyst. If necessary, the catalyst can be pre-reduced. These types of catalysts were developed mainly for enantioselective hydrogenations. For instance, a supported chiral catalyst that was based on a cationic Rh(DIPAMP) complex, phosphotungstic acid and alumina showed an ee-value of 93% with a TOF of about 100 IT1 in the hydrogenation of 2-acetamidoacrylic acid methyl ester (Fig. 42.4 Table 42.2). [Pg.1429]

Bartholomew and coworkers32 described deactivation of cobalt catalysts supported on fumed silica and on silica gel. Rapid deactivation was linked with high conversions, and the activity was not recovered by oxidation and re-reduction of the catalysts, indicating that carbon deposition was not responsible for the loss of activity. Based on characterization of catalysts used in the FTS and steam-treated catalysts and supports the authors propose that the deactivation is due to support sintering in steam (loss of surface area and increased pore diameter) as well as loss of cobalt metal surface area. The mechanism of the latter is suggested to be due to the formation of cobalt silicates or encapsulation of the cobalt metal by the collapsing support. [Pg.16]

An efficient, low temperature oxidation catalyst was developed based on highly disperse metal catalyst on nanostructured Ti02 support. Addition of dopants inhibits metal sintering and prevents catalyst deactivation. The nanostructured catalyst was formulated to tolerate common poisons found in environments such as halogen- and sulfur-containing compounds. The nanocatalyst is capable of oxidizing carbon monoxide and common VOCs to carbon dioxide and water at near ambient temperatures (25-50 °C). [Pg.358]


See other pages where Catalyst supports carbon-based is mentioned: [Pg.222]    [Pg.20]    [Pg.77]    [Pg.172]    [Pg.122]    [Pg.225]    [Pg.57]    [Pg.137]    [Pg.54]    [Pg.191]    [Pg.189]    [Pg.360]    [Pg.753]    [Pg.459]    [Pg.227]    [Pg.228]    [Pg.389]    [Pg.549]    [Pg.337]    [Pg.320]    [Pg.82]    [Pg.285]    [Pg.428]    [Pg.443]    [Pg.447]    [Pg.453]    [Pg.462]    [Pg.74]    [Pg.336]    [Pg.151]    [Pg.130]    [Pg.397]    [Pg.220]    [Pg.346]    [Pg.214]    [Pg.718]   
See also in sourсe #XX -- [ Pg.261 , Pg.264 ]




SEARCH



Carbon bases

Carbon support

Carbon supported

Carbon supported catalysts

Carbon-based

Carbon-based catalysts

Carbonate supports

Catalyst supports carbon

Catalysts carbon

© 2024 chempedia.info