Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst bulk property

There are, therefore, a number of distinct structural characteristics which must be identified in order to fuUy understand the action of oxide catalysts. Bulk properties of interest include the identification of distinct crystallographic phases present in the catalyst the local environment of the nuclei in either crystalline phases or amorphous materials and the redox properties of the catalyst. Surface properties impacting on catalytic activity include the local environment of nuclei at the surface acid-base behavior the number and concentration of acid sites, including hydroxyl groups and the nature of these acid sites. [Pg.196]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

B bulk property d deactivation e effective property G gas phase i component index i reaction index L liquid phase p catalyst particle property equilibrium conditions... [Pg.185]

In this brief review we illustrated on selected examples how combinatorial computational chemistry based on first principles quantum theory has made tremendous impact on the development of a variety of new materials including catalysts, semiconductors, ceramics, polymers, functional materials, etc. Since the advent of modem computing resources, first principles calculations were employed to clarify the properties of homogeneous catalysts, bulk solids and surfaces, molecular, cluster or periodic models of active sites. Via dynamic mutual interplay between theory and advanced applications both areas profit and develop towards industrial innovations. Thus combinatorial chemistry and modem technology are inevitably intercoimected in the new era opened by entering 21 century and new millennium. [Pg.11]

The scientific literature abounds in attempted correlations between the catalytic activities, of a series of catalytic electrode metals and some set of bulk properties, of these metals. Such correlations would help in understanding the essence of catalytic action and will enable a conscious selection of the most efficient catalysts for given electrochemical reactions. [Pg.526]

A general problem existing with all multicomponent catalysts is the fact that their catalytic activity depends not on the component ratio in the bulk of the electrode but on that in the surface layer, which owing to the preferential dissolution of certain components, may vary in time or as a result of certain electrode pretreatments. The same holds for the phase composition of the surface layer, which may well be different from that in the bulk alloy. It is for this reason that numerous attempts at correlating the catalytic activities of alloys and other binary systems with their bulk properties proved futile. [Pg.540]

Despite various attempts, no single universal correlation between bulk properties and catalytic activity of solids has been found. It is now recognized that the geometric factor and the electronic factor cannot be separated from one another and that catalytic activity should be considered along with catalyst selectivity to arrive at an understanding of heterogeneous catalysis (Sachtler, 1981). [Pg.520]

Along this line, the limitations of the technique used must be recognized. Some measure predominantly bulk properties, e.g., X-ray diffraction and magnetic susceptibility whereas, others are sensitive to surface composition, e.g., adsorption and ESCA. For example, in one reported study only cobalt in tetrahedral coordination was found on a catalyst by diffuse reflection spectroscopy, but magnetic measurements revealed that octahedral cobalt must also be present (10). Thus, it is dangerous to rely on any one method to characterize these catalysts. [Pg.268]

Characterization of the Bulk Properties of Catalysts Measurements of Particle-size Distribution Functions of Supported Catalysts -... [Pg.62]

Figure 21 provides an example of the use of ESCA to define an oxidation state of a freshly reduced palladium-on-carbon hydrogenation catalyst exposed to the air. The metallic palladium peaks (Fig. 21a) are quite evident, indicating no bulk oxidation occurred. There is a strong peak for carbon, probably due to adsorbed CO2 from the air. The presence of a small amount of PdO is suggested at 337 eV in Fig. 21B. This peak is a shoulder on the palladium 3 5/2 peak and most likely represents a surface layer of oxide on the palladium. This information could not be conveniently obtained by XRD because small palladium (or PdO) crystallites cannot diffract X rays. Furthermore, XRD measures bulk properties and would not see surface oxides even if the crystallite sizes were sufficiently large to be XRD sensitive. We can therefore expect to see more frequent use of ESCA or other surface sensitive techniques to monitor the surface of catalytic materials. Figure 21 provides an example of the use of ESCA to define an oxidation state of a freshly reduced palladium-on-carbon hydrogenation catalyst exposed to the air. The metallic palladium peaks (Fig. 21a) are quite evident, indicating no bulk oxidation occurred. There is a strong peak for carbon, probably due to adsorbed CO2 from the air. The presence of a small amount of PdO is suggested at 337 eV in Fig. 21B. This peak is a shoulder on the palladium 3 5/2 peak and most likely represents a surface layer of oxide on the palladium. This information could not be conveniently obtained by XRD because small palladium (or PdO) crystallites cannot diffract X rays. Furthermore, XRD measures bulk properties and would not see surface oxides even if the crystallite sizes were sufficiently large to be XRD sensitive. We can therefore expect to see more frequent use of ESCA or other surface sensitive techniques to monitor the surface of catalytic materials.
Catalysts were some of the first nanostructured materials applied in industry, and many of the most important catalysts used today are nanomaterials. These are usually dispersed on the surfaces of supports (carriers), which are often nearly inert platforms for the catalytically active structures. These structures include metal complexes as well as clusters, particles, or layers of metal, metal oxide, or metal sulfide. The solid supports usually incorporate nanopores and a large number of catalytic nanoparticles per unit volume on a high-area internal surface (typically hundreds of square meters per cubic centimeter). A benefit of the high dispersion of a catalyst is that it is used effectively, because a large part of it is at a surface and accessible to reactants. There are other potential benefits of high dispersion as well— nanostructured catalysts have properties different from those of the bulk material, possibly including unique catalytic activities and selectivities. [Pg.50]

The electronic properties of small silver clusters chemisorbed on AgBr have been calculated by Baetzold (66) using MO theory. This problem deals with catalysis since, as Hamilton and Urbach (67) have described, the silver centers are catalysts for the chemical reduction of AgBr grains. By using various experimental techniques, they indicate that a minimum size cluster of 4 Ag atoms is required for the catalysis. This suggests that some properties of 4 bonded silver atoms are different from atomic and perhaps like bulk properties, which could account for the catalysis. [Pg.41]

Indeed, lattice parameters of both the copper and the zinc oxide were found to depend on the catalyst composition. The lattice extension of copper was attributed to alpha brass formation upon partial reduction of zine oxide, and an attempt was made to correlate the lattice constant of copper with the decomposition rate of methanol to methyl formate. Furthermore, the decomposition rate of methanol to carbon monoxide was found to correlate with the changes of lattice constant of zinc oxide. Although such correlations did not establish the cause of the promotion in the absence of surface-area measurements and of correlations of specific activities, the changes of lattice parameters determined by Frolich et al. are real and indicate for the first time that the interaction of catalyst components can result in observable changes of bulk properties of the individual phases. Frolich et al. did not offer an interpretation of the observed changes in lattice parameters of zinc oxide. Yet these changes accompany the formation of an active catalyst, and much of this review will be devoted to the origin, physicochemical nature, and catalytic activity of the active phase in the zinc oxide-copper catalysts. [Pg.247]

Table 7. Comparison of the productivity, molecular weight, melting point and isotaeticity obtained in polymerization experiments with various metallocene/MAO catalysts (bulk polymerization in 11 liquid propene at 70 °C, Al/Zr ratio 15000) showing the broad range of product properties) [96]... Table 7. Comparison of the productivity, molecular weight, melting point and isotaeticity obtained in polymerization experiments with various metallocene/MAO catalysts (bulk polymerization in 11 liquid propene at 70 °C, Al/Zr ratio 15000) showing the broad range of product properties) [96]...
This complexity determines that investigations on heterogeneous photo-catalytic processes sometimes report information only on dark adsorption and use this information for discussing the results obtained under irradiation. This extrapolation is not adequate as the characteristics of photocatalyst surface change under irradiation and, moreover, active photoadsorption centers are generated. Nowadays very effective methods allow a soimd characterization of bulk properties of catalysts, and powerful spectroscopies give valuable information on surface properties. Unfortunately information on the photoadsorption extent under real reaction conditions, that is, at the same operative conditions at which the photoreactivity tests are performed, are not available. For the cases in which photoreaction events only occur on the catalyst surface, a critical step to affect the effectiveness of the transformation of a given compound is to understand the adsorption process of that compound on the catalyst surface. The study of the adsorbability of the substrate allows one to predict the mechanism and kinetics that promote its photoreaction and also to correctly compare the performance of different photocatalytic systems. [Pg.4]

Solid-state NMR has become a fundamental part of the toolkit to characterize catalysts and other solid materials. It is now routine to employ one of the many NMR techniques available to extract information about both the surface properties and the bulk properties of catalysts. Additional information on redox properties and... [Pg.196]


See other pages where Catalyst bulk property is mentioned: [Pg.194]    [Pg.335]    [Pg.269]    [Pg.327]    [Pg.121]    [Pg.27]    [Pg.273]    [Pg.252]    [Pg.359]    [Pg.473]    [Pg.2]    [Pg.109]    [Pg.76]    [Pg.134]    [Pg.337]    [Pg.307]    [Pg.142]    [Pg.30]    [Pg.271]    [Pg.261]    [Pg.175]    [Pg.327]    [Pg.350]    [Pg.16]    [Pg.64]    [Pg.252]    [Pg.335]    [Pg.597]    [Pg.633]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Bulk catalysts

Bulk properties

Catalyst properties

© 2024 chempedia.info