Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis shape selectivity

Shape anisotropy Shape control Shape factors Shape-memory alloys Shape-selective catalysis Shape selectivity Sharpless catalyst Shaving cream Shaving creams... [Pg.882]

Zeolites have led to a new phenomenon in heterogeneous catalysis, shape selectivity. It has two aspects (a) formation of an otherwise possible product is blocked because it cannot fit into the pores, and (b) formation of the product is blocked not by (a) but because the transition state in the bimolecular process leading to it cannot fit into the pores. For example, (a) is involved in zeolite catalyzed reactions which favor a para-disubstituted benzene over the ortho and meso. The low rate of deactivation observed in some reactions of hydrocarbons on some zeoUtes has been ascribed to (b) inhibition of bimolecular steps forming coke. [Pg.65]

The unique catalytic properties of supported metal complexes, compared with different from metal and metal oxides, have been devoted to various chemical processes, including selective oxidation catalysis, shape selective catalysis and... [Pg.411]

To date, no chiral zeolite or molecular sieve has been obtained. However, Newsam et al. (48) have shown that zeolite beta is an intergrowth of two distinct structures polymorph A and B. Polymorph A forms an enantiomorphic pair. Thus, synthesis of one of the enantiomorphs of polymorph A would yield the first chiral zeolite and initiate the possibility of performing intrazeolitic asymmetric catalysis. Shape selective asymmetric catalysis would be the ultimate achievement in shape selective catalysis, and would certainly be a step closer toward truly mimicking enzyme catalysis. [Pg.221]

Weisz P B 1981 Molecular shape selective catalysis Proc. 7th Int. Congr. on Catalysis (Tokyo) 1 1... [Pg.2713]

Ti, B, Ni, Cr, Fe, Co, Mn) has been described, as was the synthesis of nonsiliceous materials such as oxides of W, Fe, Pb, Mo, and Sb [18]. Although these materials do not represent tme zeolites, they are highly interesting materials which are commonly covered in the zeolite literature with great potential for shape-selective catalysis of bulky molecules. [Pg.2782]

Anotlier important modification metliod is tire passivation of tire external crystallite surface, which may improve perfonnance in shape selective catalysis (see C2.12.7). Treatment of zeolites witli alkoxysilanes, SiCl or silane, and subsequent hydrolysis or poisoning witli bulky bases, organophosphoms compounds and arylsilanes have been used for tliis purjDose [39]. In some cases, tire improved perfonnance was, however, not related to tire masking of unselective active sites on tire outer surface but ratlier to a narrowing of tire pore diameters due to silica deposits. [Pg.2786]

Figure C2.12.10. Different manifestations of shape-selectivity in zeolite catalysis. Reactant selectivity (top), product selectivity (middle) and transition state selectivity (bottom). Figure C2.12.10. Different manifestations of shape-selectivity in zeolite catalysis. Reactant selectivity (top), product selectivity (middle) and transition state selectivity (bottom).
Only a very few selected examples have been discussed. The number of processes based on shape-selective catalysis by zeolites is ever increasing, particularly in the field of speciality and fine chemicals and quite a few have been... [Pg.2790]

Csicsery S M 1976 Shape-selective catalysis Zeoiite Chemistry and Cataiysis ACS Monograph vol 171, ed J A Rabo (Washington, DC American Chemical Society) pp 680-713... [Pg.2793]

Weitkamp J, Ernst S and Puppe L 1999 Shape-selective catalysis in zeolites Cataiysis and Zeoiites, Fundamentais and Appiications ed J Weitkamp and L Puppe (Berlin Springer) pp 327-76... [Pg.2793]

N. Y. Chen, W. E. Garwood, and F. G. Dwyer, Shape Selective Catalysis in Industrial Applications, Marcel Dekker, Inc., New York, 1989. [Pg.98]

Activated diffusion of the adsorbate is of interest in many cases. As the size of the diffusing molecule approaches that of the zeohte channels, the interaction energy becomes increasingly important. If the aperture is small relative to the molecular size, then the repulsive interaction is dominant and the diffusing species needs a specific activation energy to pass through the aperture. Similar shape-selective effects are shown in both catalysis and ion exchange, two important appHcations of these materials (21). [Pg.447]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

In shape-selective catalysis, the pore size of the zeoHte is important. For example, the ZSM-5 framework contains 10-membered rings with 0.6-nm pore size. This material is used in xylene isomerization, ethylbenzene synthesis, dewaxing of lubricatius oils and light fuel oil, ie, diesel and jet fuel, and the conversion of methanol to Hquid hydrocarbon fuels (21). [Pg.449]

Shape selective catalysis as typically demonstrated by zeolites is of great interest from scientific as well as industrial viewpoint [17], However, the application of zeolites to organic reactions in a liquid-solid system is very limited, because of insufficient acid strength and slow diffusion of reactant molecules in small pores. We reported preliminarily that the microporous Cs salts of H3PW12O40 exhibit shape selectivity in a liquid-solid system [18]. Here we studied in more detail the acidity, micropore structure and catal3rtic activity of the Cs salts and wish to report that the acidic Cs salts exhibit efficient shape selective catalysis toward decomposition of esters, dehydration of alcohol, and alkylation of aromatic compound in liquid-solid system. The results were discussed in relation to the shape selective adsorption and the acidic properties. [Pg.582]

The shape selective catalysis was examined by choosing five kinds of the reactions, Eqs. (1) - (5), that is, dehydration of 2-hexanol, decompositions of three kinds of esters and alkylation of 1,3,5-trimethylbenzene with cyclohexene. [Pg.582]

The critical sizes of the reactant molecules were estimated and are shown in Figure 5, where the figures for 2-hexanol, isopropylacetate, sec-butylacetate and cyclohexylacetate are estimated by MM2 from Pauling s atomic radius and molecular model [18]. Therefore, the unique catalysis of Cs2.2 is understood if one assumes that it is active only for small molecules. In other words, this catalyst exhibits "reactant shape selectivity", where the catalyst differentiates the reactants according to their size. [Pg.588]

As was stated above, the very strong acidity (and probably together with the organophilicity of the pore wall) makes these salts very active catalysts in liquid-solid organic reaction systems. We wish to emphasize that this is the first example for the shape selective catalysis of heteropolyacids at least to our knowledge. [Pg.589]

Reverse Osmosis Technology Applications for High-Purity-Water Production, edited by Bipin S. Parekh Shape Selective Catalysis in Industrial Applications,... [Pg.540]

Zeolites possess the remarkable property of exhibiting shape-selective catalysis even when they are X-ray amorphous. Clearly, even though there is no long range order, there is still a degree of structural organization in the aluminosilicate adequate to exert shape-selectivity in the "noncrystalline" regions of the samples. Thanks to HREM we can now understand how this state of affairs arises (17). [Pg.429]


See other pages where Catalysis shape selectivity is mentioned: [Pg.216]    [Pg.216]    [Pg.2789]    [Pg.207]    [Pg.449]    [Pg.458]    [Pg.180]    [Pg.171]    [Pg.225]    [Pg.83]    [Pg.89]    [Pg.2]    [Pg.581]    [Pg.586]    [Pg.8]    [Pg.78]    [Pg.95]    [Pg.542]    [Pg.202]    [Pg.328]   
See also in sourсe #XX -- [ Pg.351 ]




SEARCH



Catalysis selective

Catalysis/catalysts shape-selective

Geometrical Constraints Shape-selective Catalysis

Molecular shape-selectivity, zeolite catalysis

Product shape selectivity , zeolite catalysis

Reactant shape selectivity , zeolite catalysis

Shape selection

Shape selective catalysi

Shape selective catalysi

Shape selective catalysis, zeolites

Shape selectivity

Shape-selective catalysis

Shape-selective catalysis development

Shape-selective catalysis with zeolites

© 2024 chempedia.info