Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis cobalt chloride

The Co11 complexes obtained by eq 38 may interact with other products of the reaction such as HC1. While cobalt porphyrins are generally unaffected by counterions and byproducts, cobaloximes show complicated patterns of reactivity. When Co111—Cl cobaloxime catalysts are re-isolated after catalysis, stoichiometric chloride is obtained despite the conclusion that the catalysts had passed through a Co11, halide-free state. For Co111—Cl cobaloxime catalysts, there is an induction period defined stoichiometrically... [Pg.538]

Carbonyiation of butadiene gives two different products depending on the catalytic species. When PdCl is used in ethanol, ethyl 3-pentenoate (91) is obtained[87,88]. Further carbonyiation of 3-pentenoate catalyzed by cobalt carbonyl affords adipate 92[89], 3-Pentenoate is also obtained in the presence of acid. On the other hand, with catalysis by Pd(OAc)2 and Ph3P, methyl 3,8-nonadienoate (93) is obtained by dimerization-carbonylation[90,91]. The presence of chloride ion firmly attached to Pd makes the difference. The reaction is slow, and higher catalytic activity was observed by using Pd(OAc) , (/-Pr) ,P, and maleic anhydride[92]. Carbonyiation of isoprcne with either PdCi or Pd(OAc)2 and Ph,P gives only the 4-methyl-3-pentenoate 94[93]. [Pg.437]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

A number of metal porphyrins have been examined as electrocatalysts for H20 reduction to H2. Cobalt complexes of water soluble masri-tetrakis(7V-methylpyridinium-4-yl)porphyrin chloride, meso-tetrakis(4-pyridyl)porphyrin, and mam-tetrakis(A,A,A-trimethylamlinium-4-yl)porphyrin chloride have been shown to catalyze H2 production via controlled potential electrolysis at relatively low overpotential (—0.95 V vs. SCE at Hg pool in 0.1 M in fluoroacetic acid), with nearly 100% current efficiency.12 Since the electrode kinetics appeared to be dominated by porphyrin adsorption at the electrode surface, H2-evolution catalysts have been examined at Co-porphyrin films on electrode surfaces.13,14 These catalytic systems appeared to be limited by slow electron transfer or poor stability.13 However, CoTPP incorporated into a Nafion membrane coated on a Pt electrode shows high activity for H2 production, and the catalysis takes place at the theoretical potential of H+/H2.14... [Pg.474]

Cobaloxime(I) generated by the electrochemical reductions of cobaloxime(III), the most simple model of vitamin Bi2, has been shown to catalyze radical cyclization of bromoacetals.307 Cobalt(I) species electrogenerated from [ConTPP] also catalyze the reductive cleavage of alkyl halides. This catalyst is much less stable than vitamin Bi2 derivatives.296 It has, however, been applied in the carboxylation of benzyl chloride and butyl halides with C02.308 Heterogeneous catalysis of organohalides reduction has also been studied at cobalt porphyrin-film modified electrodes,275,3 9-311 which have potential application in the electrochemical sensing of pollutants. [Pg.489]

Recently, it has been discovered that catalysis by rhodium compounds is more effective than by the older cobalt catalyst when tris(triphenylphosphine)rhodium chloride is treated with carbon monoxide, the catalyst bis(triphenylphosphine)rhodium carbonyl chloride is formed. This catalyst is very effective under very mild conditions (49-51). It is believed that the tr-ir rearrangement is also important with this catalyst and operates in a manner analogous to that in the cobalt-catalyzed process, since stablization of the cr complex has been shown to lead to olefin isomerization and lower linear selectivity (52). [Pg.245]

It is important to note that even certain phase-transfer catalysts can be carbonylated to carboxylic acids, not by cobalt tetracarbonyl anion catalysis, but by acetylcobalt tetracarbonyl. This is a slow but high-yield reaction that occurs for quaternary ammonium salts that are capable of forming reasonably stable free radicals. For example, phenylacetic acid is formed in 95% yield from benzyltriethylammonium chloride (benzyl radi-... [Pg.196]

The sulfuration of diketones 600 with hexamethyldisilathiane under cobalt(ll) chloride catalysis gives the di-silylated thiophenes 601 along with minor amounts of the corresponding furans 602 (Equation 30) <2004TL87>. [Pg.896]

Among the most significant developments in the field of catalysis in recent years have been the discovery and elucidation of various new, and often novel, catalytic reactions of transition metal ions and coordination compounds 13, 34). Examples of such reactions are the hydrogenation of olefins catalyzed by complexes of ruthenium (36), rhodium (61), cobalt (52), platinum (3, 26, 81), and other metals the hydroformylation of olefins catalyzed by complexes of cobalt or rhodium (Oxo process) (6, 46, 62) the dimerization of ethylene (i, 23) and polymerization of dienes (15, 64, 65) catalyzed by complexes of rhodium double-bond migration in olefins catalyzed by complexes of rhodium (24,42), palladium (42), cobalt (67), platinum (3, 5, 26, 81), and other metals (27) the oxidation of olefins to aldehydes, ketones, and vinyl esters, catalyzed by palladium chloride (Wacker process) (47, 48, 49,... [Pg.1]

The obvious alternative based on the reaction of 1 with alcohols is of limited value and has been applied to alcohols that are precursors of stabilized carbenium ions, both under protic (83AP988) and cobalt(II) chloride catalysis (83MI1) and under purely thermal conditions (59CB982). This last paper describes an unusual case of carbon-carbon formation, although in low yield, under Sandmeyer conditions at C3 of pyrone 1. [Pg.37]

The immobilization of an active species into a conducting polymer layer allows one to obtain active electrodes for the reduction of various organic halides. Polypyrrole containing viologen electrodes appear to be active for the reduction of alkyl dibromide [177] or hexachloroacetone [178], Cobalt-bipyridyl-polypyrrole films are active electrodes for the reduction of alkyl chloride [107], The mechanism of this reaction is similar to that observed in the homogeneous phase. This confinns one of the major interests of the modified conductive polymer electrodes, i,e. the possibility of performing catalytic reactions with smaller amounts of active catalyst in comparison to homogeneous catalysis, and then to avoid problems related to the separation of products from the solution which contains this catalyst. [Pg.492]


See other pages where Catalysis cobalt chloride is mentioned: [Pg.411]    [Pg.62]    [Pg.84]    [Pg.166]    [Pg.156]    [Pg.261]    [Pg.365]    [Pg.26]    [Pg.558]    [Pg.2]    [Pg.506]    [Pg.378]    [Pg.757]    [Pg.605]    [Pg.787]    [Pg.180]    [Pg.253]    [Pg.30]    [Pg.192]    [Pg.148]    [Pg.265]    [Pg.3688]    [Pg.5212]    [Pg.571]    [Pg.605]    [Pg.787]    [Pg.39]    [Pg.598]    [Pg.3687]    [Pg.5211]    [Pg.6750]    [Pg.6932]    [Pg.83]    [Pg.108]   


SEARCH



Cobalt Chloride

Cobaltic chloride

Cobaltous Chloride

© 2024 chempedia.info