Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cast films, block copolymers

The samples for mechanical and morphological characterization are prepared by two different methods. In the first method, referred to herein as solution cast, the block copolymer is first dissolved in a non-preferential solvent, i.e. toluene, to obtain a 5-weight % by volume solution. The solution is then dried over a period of 8-10 days. The films thus obtained are dried at 45 C for 6 hours to remove the excess solvent. Some of these films are characterized without further heat treatment. After complete solvent removal the films are subjeeted to annealing temperatures of 80°C, 120°C and 160°C for 24 hours, followed by a quench in an ice water bath. [Pg.1781]

The block copolymer and the microsphere were cast from polymer-benzene solution on a Teflon sheet. The solution was gradually dried at room temperature. Film was microtomed vertically at 80 nm thick by the Ul-traCut-N (Reichert Nissei). In order to obtain enough contrast for TEM observation, the P4VP microdomains in the film were stained with OSO4. The film was observed by TEM (JEOL CX-100) at 100 kV. [Pg.603]

Hedrick et al. reported imide aryl ether ketone segmented block copolymers.228 The block copolymers were prepared via a two-step process. Both a bisphenol-A-based amorphous block and a semicrystalline block were prepared from a soluble and amorphous ketimine precursor. The blocks of poly(arylene ether ether ketone) oligomers with Mn range of 6000-12,000 g/mol were coreacted with 4,4,-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) diethyl ester diacyl chloride in NMP in the presence of A - me thy 1 morphi 1 i nc. Clear films with high moduli by solution casting and followed by curing were obtained. Multiphase morphologies were observed in both cases. [Pg.360]

Cakmak M. and Wang M.D., Structure development in the tubular blown film of PP/EPDM thermoplastic elastomer, Antec 89, 47th Annual Tech. Conference of SPE, New York, May 1, 1989, 1756. Hashimoto T., Todo A., Itoi H., and Kawai H. Domain boundary structure of styrene-isoprene block copolymer films cast from solution. 2. Quantitative estimation of the interfacial thickness of lamellar microphase systems. Macromolecules, 10, 377, 1977. [Pg.162]

Gong, Y., Huang, H., Hu, Z., Chen, Y, Chen, D Wang, Z. and He, X. (2006) Inverted to normal phase transition in solution-cast polystyrene-poly(methyl methacrylate) block copolymer thin films. Macromolecules, 39, 3369-3376. [Pg.223]

The use of lightly crosslinked polymers did result in hydrophilic surfaces (contact angle 50°, c-PI, 0.2 M PhTD). However, the surfaces displayed severe cracking after 5 days. Although qualitatively they appeared to remain hydrophilic, reliable contact angle measurements on these surfaces were impossible. Also, the use of a styrene-butadiene-styrene triblock copolymer thermoplastic elastomer did not show improved permanence of the hydrophilicity over other polydienes treated with PhTD. The block copolymer film was cast from toluene, and transmission electron microscopy showed that the continuous phase was the polybutadiene portion of the copolymer. Both polystyrene and polybutadiene domains are present at the surface. This would probably limit the maximum hydrophilicity obtainable since the RTD reagents are not expected to modify the polystyrene domains. [Pg.227]

Microporous structures form on cast film from rod-coil block copolymer micelles... [Pg.222]

Fig. 9 Schematic representation of three approaches to generate nanoporous and meso-porous materials with block copolymers, a Block copolymer micelle templating for mesoporous inorganic materials. Block copolymer micelles form a hexagonal array. Silicate species then occupy the spaces between the cylinders. The final removal of micelle template leaves hollow cylinders, b Block copolymer matrix for nanoporous materials. Block copolymers form hexagonal cylinder phase in bulk or thin film state. Subsequent crosslinking fixes the matrix hollow channels are generated by removing the minor phase, c Rod-coil block copolymer for microporous materials. Solution-cast micellar films consisted of multilayers of hexagonally ordered arrays of spherical holes. (Adapted from [33])... Fig. 9 Schematic representation of three approaches to generate nanoporous and meso-porous materials with block copolymers, a Block copolymer micelle templating for mesoporous inorganic materials. Block copolymer micelles form a hexagonal array. Silicate species then occupy the spaces between the cylinders. The final removal of micelle template leaves hollow cylinders, b Block copolymer matrix for nanoporous materials. Block copolymers form hexagonal cylinder phase in bulk or thin film state. Subsequent crosslinking fixes the matrix hollow channels are generated by removing the minor phase, c Rod-coil block copolymer for microporous materials. Solution-cast micellar films consisted of multilayers of hexagonally ordered arrays of spherical holes. (Adapted from [33])...
Microdomains of block copolymer/ homopolymer blends 25-A-diameter Pd clusters Metal-ion precursors, introduced into cast thin films of polymer microdomains, are reduced by high pressure hydrogen 60,61... [Pg.212]

The surface of bulk block copolymer samples has been studied using TEM by Turturro et al. (1995). They report that non-equilibrium structures with lamellar and cylindrical microdomains oriented normal to the free surface can result from solvent casting, with a high evaporation rate. However, slower evaporation of solvent from their PS-PB diblocks resulted in the equilibrium conformation with domains parallel to the free surface. Perpendicular orientation of PS-PB lamellae at the free surface was observed earlier by Henkee et al. (1988) who studied thin films prepared by solvent casting. They observed that a reduction of this orientation occurs in favour of the parallel one on annealing the sample. [Pg.114]


See other pages where Cast films, block copolymers is mentioned: [Pg.137]    [Pg.1355]    [Pg.107]    [Pg.35]    [Pg.139]    [Pg.513]    [Pg.603]    [Pg.53]    [Pg.64]    [Pg.124]    [Pg.135]    [Pg.205]    [Pg.208]    [Pg.223]    [Pg.119]    [Pg.131]    [Pg.151]    [Pg.147]    [Pg.164]    [Pg.152]    [Pg.155]    [Pg.156]    [Pg.161]    [Pg.162]    [Pg.168]    [Pg.175]    [Pg.208]    [Pg.226]    [Pg.164]    [Pg.352]    [Pg.130]    [Pg.107]    [Pg.79]    [Pg.10]    [Pg.16]    [Pg.118]    [Pg.265]   
See also in sourсe #XX -- [ Pg.268 , Pg.269 ]




SEARCH



Block casting

Block copolymer films

Cast films

Film blocking

Film casting

© 2024 chempedia.info