Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids protonation site

ACID DYES Commercial acid dyes contain one or more sulfonate groups, thereby providing solubility in aqueous media. These dyes are apphed in the presence of organic or mineral acids (pH 2—6). Such acids protonate any available cationic sites on the fiber, thereby making possible bonding between the fiber and the anionic dye molecule. Wool, an animal fiber, is an amphoteric coUoid, possessing both basic and acidic properties because of the amino and carboxylic groups of the protein stmcture. In order to dye such a system, coulombic interactions between the dye molecule and the fiber must take place ie, H2N" -wool-COO + H2N" -wool-COOH. The term acid dye is appHed to those that are capable of such interactions. Acid dyes... [Pg.432]

Alkyl radicals produced by oxidative decarboxylation of carboxylic acids are nucleophilic and attack protonated azoles at the most electron-deficient sites. Thus imidazole and 1-alkylimidazoles are alkylated exclusively at the 2-position (80AHC(27)241). Similarly, thiazoles are attacked in acidic media by methyl and propyl radicals to give 2-substituted derivatives in moderate yields, with smaller amounts of 5-substitution. These reactions have been reviewed (74AHC(i6)123) the mechanism involves an intermediate cr-complex. [Pg.73]

When a Br nsted base functions catalytically by sharing an electron pair with a proton, it is acting as a general base catalyst, but when it shares the electron with an atom other than the proton it is (by definition) acting as a nucleophile. This other atom (electrophilic site) is usually carbon, but in organic chemistry it might also be, for example, phosphorus or silicon, whereas in inorganic chemistry it could be the central metal ion in a coordination complex. Here we consider nucleophilic reactions at unsaturated carbon, primarily at carbonyl carbon. Nucleophilic reactions of carboxylic acid derivatives have been well studied. These acyl transfer reactions can be represented by... [Pg.349]

Notice in the list of Lewis bases just given that some compounds, such as carboxylic acids, esters, and amides, have more than one atom ivith a lone pair of electrons and can therefore react at more than one site. Acetic acid, for example, can be protonated either on the doubly bonded oxygen atom or on the singly bonded oxygen atom. Reaction normally occurs only once in such instances, and the more stable of the two possible protonation products is formed. For acetic add, protonation by reaction with sulfuric acid occurs on... [Pg.59]

Figure 10-4. The double- and single-site titration models for His and Asp groups [42]. (A) In the double site model, only one X is used for describing the equilibrium between the protonated and deprotonated forms, while the tautomer interversion process is represented by the variable x. (B) In the single-site model, protonation at different sites is represented by different X variables. HSP refers to the doubly protonated form of histidine. HSD and HSE refer to the singly protonated histidine with a proton on the h and e nitrogens, respectively. ASP1 and ASP2 refer to the protonated carboxylic acid with a proton on either of the carboxlate oxygens... Figure 10-4. The double- and single-site titration models for His and Asp groups [42]. (A) In the double site model, only one X is used for describing the equilibrium between the protonated and deprotonated forms, while the tautomer interversion process is represented by the variable x. (B) In the single-site model, protonation at different sites is represented by different X variables. HSP refers to the doubly protonated form of histidine. HSD and HSE refer to the singly protonated histidine with a proton on the h and e nitrogens, respectively. ASP1 and ASP2 refer to the protonated carboxylic acid with a proton on either of the carboxlate oxygens...
The first pH indicators studied possessed the acid-base site (phenol, aniline, or carboxylic acid) as an integral part of the fluorophore. Structurally, in the most general sense, pH sensitivity is due to a reconfiguration of the fluorophorets re-electron system that occurs on protonation. Consequently, the acid and the base forms often show absorption shifts and also, when the two forms fluoresce, emission shifts or at least, when only one form emits, a pH-dependent fluorescence intensity. This class of compounds has been reviewed 112 and the best structures have to be designed according to the medium probed and the technique used. After a short consideration of physiological pH indicators we will describe the main photophysical processes sensible to protonation. [Pg.128]

The values of the fractionation factors in structures [15]-[21] are not strictly comparable since they are defined relative to the fractionation in different solvent standards. However, in aqueous solution, fractionation factors for alcohols and carboxylic acids relative to water are similar and close to unity (Schowen, 1972 Albery, 1975 More O Ferrall, 1975), and it seems clear that the species [15]-[21] involving intermolecular hydrogen bonds with solvent have values of cp consistently below unity. These observations mean that fractionation of deuterium into the solvent rather than the hydrogen-bonded site is preferred, and this is compatible with a broader potential well for the hydrogen-bonded proton than for the protons of the solvents water, alcohol and acetic acid. [Pg.286]

Serine hydroxymethyl transferase catalyzes the decarboxylation reaction of a-amino-a-methylmalonic acid to give (J )-a-aminopropionic acid with retention of configuration [1]. The reaction of methylmalonyl-CoA catalyzed by malonyl-coenzyme A decarboxylase also proceeds with perfect retention of configuration, but the notation of the absolute configuration is reversed in accordance with the CIP-priority rule [2]. Of course, water is a good proton source and, if it comes in contact with these reactants, the product of decarboxylation should be a one-to-one mixture of the two enantiomers. Thus, the stereoselectivity of the reaction indicates that the reaction environment is highly hydro-phobic, so that no free water molecule attacks the intermediate. Even if some water molecules are present in the active site of the enzyme, they are entirely under the control of the enzyme. If this type of reaction can be realized using synthetic substrates, a new method will be developed for the preparation of optically active carboxylic acids that have a chiral center at the a-position. [Pg.3]

The emission from [Ru(bpz)3] is quenched by carboxylic acids the observed rate constants for the process can be rationalized in terms of the protonation of the non-coordinated N atoms on the bpz ligands. The effects of concentration of carboxylate ion on the absorption and emission intensity of [Ru(bpz)3] have been examined. The absorption spectrum of [Ru(bpz)(bpy)2] " shows a strong dependence on [H+] because of protonation of the free N sites the protonated species exhibits no emission. Phosphorescence is partly quenched by HsO" " even in solutions where [H+] is so low that protonation is not evidenced from the absorption spectrum. The lifetime of the excited state of the nonemissive [Ru(Hbpz)(bpy)2] " is 1.1ns, much shorter than that of [Ru(bpz)(bpy)2] (88 nm). The effects of complex formation between [Ru(bpz)(bpy)2] and Ag on electronic spectroscopic properties have also been studied. Like bpz, coordinated 2,2 -bipyrimidine and 2-(2 -pyridyl)pyrimidine also have the... [Pg.580]

Monoamine oxidase catalyzes the deamination of primary amines and some secondary amines, with some notable exceptions. Aromatic amines with unsubstituted a-carbon atoms are preferred, but aromatic substituents influence the binding of these substrates. For example, m-iodobenzylamine is a good substrate, whereas the o-iodo analog is an inhibitor. The mechanism of deamination is as follows hydrolysis of the Schiff base that results from loss of a hydride ion on an a-proton yields an aldehyde, which is then normally oxidized to the carboxylic acid. Aromatic substrates are probably preferred because they can form a charge-transfer complex with the FAD at the active site, properly... [Pg.497]

Because of the disorder present in ice, an array of water molecules such as that in Eq. 9-94 wouldn t revert to its exact original form in step b. However, active sites of enzymes are highly structured and proton transfers may occur with precision. For example, a synchronous shift of protons in an array of carboxylic acid, imidazolium, and phosphate groups can be envisioned readily (Eq. 9-96). The net effect of the process is to transfer a proton from one end of the chain to the other (as in Eq. 9-94) with facile tauto-... [Pg.492]


See other pages where Carboxylic acids protonation site is mentioned: [Pg.47]    [Pg.287]    [Pg.287]    [Pg.127]    [Pg.181]    [Pg.865]    [Pg.279]    [Pg.495]    [Pg.865]    [Pg.520]    [Pg.49]    [Pg.353]    [Pg.357]    [Pg.248]    [Pg.45]    [Pg.49]    [Pg.255]    [Pg.67]    [Pg.336]    [Pg.403]    [Pg.354]    [Pg.366]    [Pg.451]    [Pg.363]    [Pg.662]    [Pg.672]    [Pg.387]    [Pg.392]    [Pg.30]    [Pg.309]    [Pg.110]    [Pg.120]    [Pg.135]    [Pg.285]    [Pg.119]    [Pg.33]    [Pg.261]    [Pg.141]    [Pg.494]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Acidic site

Acids protonic

Carboxylate protonation

Carboxylic acids protonation

Carboxylic acids protons

Carboxylic acids site of protonation

Proton acids

Protonation site

Protonic acid sites

Protonic sites

Protons sites

© 2024 chempedia.info