Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids protecting-deprotection

In general, the methods for protection and deprotection of carboxylic acids and esters are not as convenient as for alcohols, aldehydes, and ketones. It is therefore common to carry potential carboxylic acids through synthetic schemes in the form of protected primary alcohols or aldehydes. The carboxylic acid can then be formed at a late stage in the synthesis by an appropriate oxidation. This strategy allows one to utilize the wider variety of alcohol and aldehyde protective groups indirectly for carboxylic acid protection. [Pg.276]

We also applied these conditions of selective deprotection on amino acids it was possible to cleave the N-allyloxycarbamate of the L-proline derivative 16 without affecting the carboxylic acid protected by the dimethylallyl moiety (entry 3). [Pg.425]

Silicon Bond Formation/Cleavage. The vast majority of applications of silicon intermediates in organic synthesis involve tert5)orary installation and removal of silicon atoms. While there are many well-established examples of classical, backside, 8 2 displacements at tetravalent silicon, it is useful for the purpose of this handbook to artificially consider that aU silicon bond formations and cleavages occur via siliconate [Si(V)] intermediates. This key reaction extends across the periodic table especially including groups 4, 5, 6, and 7. Well-known examples include the often used alcohol, phenol, and carboxylic acid protections (and selective deprotections) via the formation of silicon-oxygen derivatives (eq 1). ... [Pg.841]

List [86] and Jorgensen [87] have recently independently described a novel application of L-proline (107) for catalysis of enantioselective hydrazidation of aldehydes [88]. For example, when aldehyde 106 is allowed to react with di-tert-butyl azodicarboxylate (95) in the presence of 10 mol% 107, adduct 108 is isolated in > 90% yield and 93% ee (Scheme 10.18) [87]. The product hydra-zides can be transformed into protected amino acid derivatives through a sequence that involves oxidation of the aldehyde to the corresponding carboxylic acid, esterification, deprotection, and N-N bond cleavage with Raney-Ni [86, 87]. The observed selectivity has been attributed to the intervention of transition state 111 [86]. This structure incorporates a hydrogen bond between proline s carboxyl group and the azodicarboxylate as a key organizing feature. The transition state structure has parallels to that proposed for the proline-cata-lyzed aldol addition reactions and is supported by quantum mechanical studies by Houk [89]. [Pg.328]

In addition to the preparation of l-alkenes, the hydrogenolysis of allylic compounds with formate is used for the protection and deprotection of carboxylic acids, alcohols, and amines as allyl derivatives (see Section 2.9). [Pg.368]

Another method for deallylation of ally esters is the transfer of the allyl group to reactive nucleophiles. Amines such as morpholine are used[415-417], Potassium salts of higher carboxylic acids are used as an accepter of the allyl group[418]. The method is applied to the protection and deprotection of the acid function in rather unstable /f-lactam 664[419,420]. [Pg.381]

Fig. 23. Representative protecting groups for phenolic and carboxylic acid-based systems, (a) The polymer-based protecting groups are fisted in order of increasing activation energy for acid-catalyzed deprotection, (b) Acid-labile monomeric dissolution inhibitors, a bifunctional system based on protected bisphenol A. (c) Another system that combines the function of dissolution inhibitor and PAG in a single unit. Fig. 23. Representative protecting groups for phenolic and carboxylic acid-based systems, (a) The polymer-based protecting groups are fisted in order of increasing activation energy for acid-catalyzed deprotection, (b) Acid-labile monomeric dissolution inhibitors, a bifunctional system based on protected bisphenol A. (c) Another system that combines the function of dissolution inhibitor and PAG in a single unit.
This procedure is restricted mainly to aminodicarboxyhc acids or diaminocarboxyhc acids. In the case of neutral amino acids, the amino group or carboxyl group must be protected, eg, by A/-acylation, esterification, or amidation. This protection of the racemic amino acid and deprotection of the separated enantiomers add stages to the overall process. Furthermore, this procedure requires a stoichiometric quantity of the resolving agent, which is then difficult to recover efficiendy. Practical examples of resolution by this method have been pubUshed (50,51). [Pg.278]

Two new sections on the protection of phosphates and the alkyne-CH are included. All other sections of the book have been expanded, some more than others. The section on the protection of alcohols has increased substantially, reflecting the trend of the nineties to synthesize acetate- and propionate-derived natural products. An effort was made to include many more enzymatic methods of protection and deprotection. Most of these are associated with the protection of alcohols as esters and the protection of carboxylic acids. Here we have not attempted to be exhaustive, but hopefully, a sufficient number of cases are provided that illustrate the true power of this technology, so that the reader will examine some of the excellent monographs and review articles cited in the references. The Reactivity Charts in Chapter 10 are identical to those in the first edition. The chart number appears beside the name of each protective group when it is first introduced. No attempt was made to update these Charts, not only because of the sheer magnitude of the task, but because it is nearly impossible in... [Pg.785]

The next major obstacle is the successful deprotection of the fully protected palytoxin carboxylic acid. With 42 protected functional groups and eight different protecting devices, this task is by no means trivial. After much experimentation, the following sequence and conditions proved successful in liberating palytoxin carboxylic acid 32 from its progenitor 31 (see Scheme 10) (a) treatment with excess 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ) in ie/t-butanol/methylene chloride/phosphate buffer pH 7.0 (1 8 1) under sonication conditions, followed by peracetylation (for convenience of isolation) (b) exposure to perchloric acid in aqueous tetrahydrofuran for eight days (c) reaction with dilute lithium hydroxide in H20-MeOH-THF (1 2 8) (d) treatment with tetra-n-butylammonium fluoride (TBAF) in tetrahydrofuran first, and then in THF-DMF and (e) exposure to dilute acetic acid in water (1 350) at 22 °C. The overall yield for the deprotection sequence (31 —>32) is ca. 35 %. [Pg.725]

Another advantage of the synthesis by mixed Kolbe electrolysis is that polar groups in the carboxylic acid are tolerated in radical coupling. This makes additional protection-deprotection steps unneccessary, which are often needed in polar CC-bond forming reactions and can make these approaches less attractive in such cases. [Pg.106]

On the other hand, following the same sequences from the differently protected serine-derived nitrone 168, through the formation of hydroxylamines 169, C2 epimers of carboxylic acid and aldehydes are obtained, i.e., (2S,3R)-170 and (2S,3R)-171. Moreover, the syn adducts 164 were exclusively obtained in the addition of Grignard reagents to the nitrone 163, whereas the same reactions on nitrone 168 occurred with a partial loss of diastereoselectivity [80]. Q, j6-Diamino acids (2R,3S)- and (2R,3R)-167 can also be prepared from the a-amino hydroxylamines 164 and 169 by reduction, deprotection and oxidation steps. The diastereoselective addition of acetylide anion to N,N-dibenzyl L-serine phenyhmine has been also described [81]. [Pg.32]

Silyl-derived linker 36 was prepared in three steps from a silyl ether of serine and incorporated for Fmoc/tBu-based assembly of protected gly-copeptide blocks (Scheme 11) [42]. The a-carboxylic acid function of serine was protected as an allyl ester. Deprotection by a Pd(0) catalyst in the presence of dimedone liberated the carboxylic acid in order for subsequent... [Pg.192]

Synthesis of isomeric chiral protected (63 )-6-amino-hexahydro-2,7-dioxopyrazolo[l,2- ]pyrazole-l-carboxylic acid 280 is shown in Scheme 36. Crude vinyl phosphonate 275, obtained by treatment of diethyl allyloxycarbonylmethyl-phosphonate with acetic anhydride and tetramethyl diaminomethane as a formaldehyde equivalent, was used in the Michael addition to chiral 4-(f-butoxycarbonylamino)pyrazolidin-3-one 272. The Michael addition is run in dichloro-methane followed by addition of f-butyl oxalyl chloride and 2 equiv of Huning s base in the same pot to provide 276 in 58% yield. The allyl ester is deprotected using palladium catalysis to give the corresponding acid 277, which is... [Pg.407]

In the final stage, as depicted in Scheme 10, the BOC-protected compound 45 and the quinolone carboxylic acid 27 are heated in DMSO under tri-ethylamine, followed by deprotection of the terf-butoxycarbonyl group under acidic condition to afford the final product DQ-113 (26). [Pg.179]


See other pages where Carboxylic acids protecting-deprotection is mentioned: [Pg.548]    [Pg.63]    [Pg.32]    [Pg.439]    [Pg.540]    [Pg.172]    [Pg.808]    [Pg.6]    [Pg.7]    [Pg.5]    [Pg.226]    [Pg.12]    [Pg.372]    [Pg.663]    [Pg.175]    [Pg.82]    [Pg.516]    [Pg.99]    [Pg.59]    [Pg.139]    [Pg.247]    [Pg.200]    [Pg.294]    [Pg.72]    [Pg.285]    [Pg.94]    [Pg.365]    [Pg.47]    [Pg.162]    [Pg.180]    [Pg.226]   


SEARCH



Allylic derivatives carboxylic acid protection-deprotection

Carboxylic acids, protection

Esters carboxylic acid protection-deprotection

Protecting groups, allyl-based deprotections carboxylic acids

Protecting groups, deprotection carboxylic acids

Protection -deprotection

© 2024 chempedia.info