Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids enantiomeric synthesis

The synthesis of key intermediate 12, in optically active form, commences with the resolution of racemic trans-2,3-epoxybutyric acid (27), a substance readily obtained by epoxidation of crotonic acid (26) (see Scheme 5). Treatment of racemic 27 with enantio-merically pure (S)-(-)-1 -a-napthylethylamine affords a 1 1 mixture of diastereomeric ammonium salts which can be resolved by recrystallization from absolute ethanol. Acidification of the resolved diastereomeric ammonium salts with methanesulfonic acid and extraction furnishes both epoxy acid enantiomers in eantiomerically pure form. Because the optical rotation and absolute configuration of one of the antipodes was known, the identity of enantiomerically pure epoxy acid, (+)-27, with the absolute configuration required for a synthesis of erythronolide B, could be confirmed. Sequential treatment of (+)-27 with ethyl chloroformate, excess sodium boro-hydride, and 2-methoxypropene with a trace of phosphorous oxychloride affords protected intermediate 28 in an overall yield of 76%. The action of ethyl chloroformate on carboxylic acid (+)-27 affords a mixed carbonic anhydride which is subsequently reduced by sodium borohydride to a primary alcohol. Protection of the primary hydroxyl group in the form of a mixed ketal is achieved easily with 2-methoxypropene and a catalytic amount of phosphorous oxychloride. [Pg.176]

In Ugi four-component reactions (for mechanism, see Section 1.4.4.1.) all four components may potentially serve as the stereodifferentiating tool65. However, neither the isocyanide component nor the carboxylic acid have pronounced effects on the overall stereodiscrimination60 66. As a consequence, the factors influencing the stereochemical course of Ugi reactions arc similar to those in Strecker syntheses. The use of chiral aldehydes is commonly found in substrate-controlled syntheses whereas the asymmetric synthesis of new enantiomerically pure compounds via Ugi s method is restricted to the application of optically active amines as the chiral auxiliary group. [Pg.795]

Enantiopure (R)- and (S)-nipecotic acid (Nip) derivatives 64 were obtained following classical resolution of ethyl nipecotate with either enantiomer of tartaric acid and successive recrystallization of the corresponding salts [153, 154, 156] or by resolution of racemic nipecotic acid with enantiomerically pure camphorsul-fonic acid [154]. N-Boc protected pyrrolidine-3-carboxylic acid (PCA) 65 for the synthesis of homo-ohgomers [155] was prepared by GeUman from trans-4-hydroxy-L-prohne according to a known procedure [157]. [Pg.49]

Groger, H. (2001) Enzymatic routes to enantiomerically pure aromatic a-hydroxy carboxylic acids a further example for the diversity of biocatalysis. Advanced Synthesis and Catalysis, 343, 547-558. [Pg.193]

Namely, allyl alcohol is successively treated with diethylzinc, (R,R) dipropyl tartrate, and 4-methoxybenzohydroximinoyl chloride (163) to afford the enantiomeric isoxazoline alcohol 166, which under the Jones oxidation conditions affords the corresponding carboxylic acid derivative (167). Treatment of compound 167 with hydroxylamine-O-triflate followed by tri-fluoroacetic acid gives rise to the desired enantiomeric 165 in high excess enantiomeric yield. The synthesis of other isosteric analogues of 165 was reported in the same paper. None of the isosteric analogues exhibits LpxC inhibitory and antibacterial activities [103]. [Pg.212]

A second example of the use of ionic chiral auxiliaries for asymmetric synthesis is found in the work of Chong et al. on the cis.trans photoisomerization of certain cyclopropane derivatives [33]. Based on the report by Zimmerman and Flechtner [34] that achiral tmns,trans-2,3-diphenyl-l-benzoylcyclopropane (35a, Scheme 7) undergoes very efficient (0=0.94) photoisomerization in solution to afford the racemic cis,trans isomer 36a, the correspondingp-carboxylic acid 35b was synthesized and treated with a variety of optically pure amines to give salts of general structure 35c (CA=chiral auxiliary). Irradiation of crystals of these salts followed by diazomethane workup yielded methyl ester 36d, which was analyzed by chiral HPLC for enantiomeric excess. The results are summarized in Table 3. [Pg.15]

A new stereocenter is formed when a synthon 143 with umpoled carbonyl reactivity (d reactivity) is introduced into aldehydes or imines. The enantioselective variant of this type of reaction was a longstanding problem in asymmetric synthesis. The very large majority of a-hetero-snbstitnted carbanions which serve as eqnivalents for synthons like 142 and 143 lead to racemic products with aldehydes or imines. However, enantiomerically pnre acylions and a-hydroxy carboxylic acids or aldehydes (144 and ent-144, respectively) as well as a-amino acids and aldehydes (145 and ent-145) are accessible either by nsing chiral d reagents or by reacting the components in the presence of chiral additives (Scheme 18). [Pg.877]

For a,a-dialkylamino acids enantiomerization is not a problem. The preparation of 4,4-dimethyl-2-[(9-fluorenylmethyl)oxy]-5(4F/)-oxazolone, an intermediate used in the synthesis of ( )-mirabazole C has been described. Recently, two new 2-aIkoxy-5(4F/)-oxazolones derived from Toac (2,2,6,6-tetramethyl-4-amino-l-oxy-piperidine-4-carboxylic acid) that incorporate Z or 9-fluorenylmethoxycarbonyl (Fmoc) protection at C-2 have been described. The Toac analogues were synthesized as part of a study of the crystal structure and ab initio calculations for these interesting systems. [Pg.178]

The enantiomeric synthesis of rranj-3,4-disubstituted tetrahydrothiophenes using a sulfur ylide cycloaddition has been reported <990L1667>. The sulfur ylide derived from the action of cesium fluoride on sulfide 111 underwent an asymmetric cycloaddition with chiral a,p-unsaturated camphorsultam amide 112 giving tetrahydrothiophene 113 (80% de). The configuration was confirmed by cleavage of the chiral auxiliary followed by reductive desulfurization with Raney-Ni which gave known carboxylic acid 114. [Pg.103]

The alkylation of metalated imines, hydrazones, 4,5-dihydrooxazoles, 4,5-dihydroisoxazoles, 5,6-dihydro-4/7-1,2-oxazines and 2,5-dialkoxy-3,6-dihydropyrazines (i.e., azaenolates) is a commonly used method in asymmetric synthesis of enantiomerically enriched aldehydes, ketones, spiroacetals, amines, /J-oxo esters, carboxylic acids, lactones, 1,3-amino alcohols, /(-hydroxy ketones and amino acids. [Pg.969]

This was first experimentally verified for the [2.2]metacyclophane-4-carboxylic acid (55) which had to be prepared by an elaborate 7-step synthesis 771 in order to avoid an electrophilic substitution which might have led to a transanular ring closure (as had been observed in so many cases of [2.2]metacyclophanes)12). The resolution of 55 was accomplished via salt formation with (-t-)-l-phenylethylamine and gave the levorotatory acid ([a]D —9° in CHC13) which then was transformed into several optically active derivatives. The enantiomeric purity of 55 (and therefore of all compounds correlated with it) was confirmed by nmr spectroscopy of the diastereo-meric esters with (—)-l-phenylethanol77) as well as by HPLC of its diasteromeric naphthylamides 55). [Pg.41]

In a similar approach, Kasture and coworkers describe the use of neat substrate (ethyl acetate both as alcohol donor and as the reaction medium) in the preparation of chirally pure S-(-)-l,4-benzodioxan-2-carboxylate, an important drug intermediate used in the synthesis of doxazosin mesylate, from racemic l,4-benzodioxan-2-carboxylic acid [138]. Again, CaLB catalyzed the transesterification reaction with good enanhoselectivity (E = 160) and acceptable enantiomeric excess (>95%) and chemical yield (50%). [Pg.41]

A number of methods for the synthesis of piperazic acid (7) and related derivatives are currently available as a result of growing interest in natural product chemistry and in their potential in medicinal chemistry. Their chemistry and conformational properties have been comprehensively reviewed. 2451 Racemic piperazic acid is obtained by condensation of penta-2,4-dienoic acid with phthalazinedione and subsequent reductive deprotection of the resulting A,A -bis(phthaloyl)-l,2,3,6-tetrahydropyridazine-3-carboxylic acid.12431 Resolution of racemic piperazic acid is achieved by fractional crystallization of the ephedrine salt of Nl-(benzyloxycarbonyl)piperazic acid from ethyl acetate. 246,2471 A typical route to enantiomerically pure (3S)-piperazic acid 56 starts from chiral 2-amino-5-hydroxyvaleric acid 55 as shown in Scheme 12.1248 Convenient stereoselective syntheses have been reported for 5-hydroxy- and 5-chloropiperazic acids as important constituents of natural cyclic peptides and depsipep-tides.1249,2521... [Pg.79]

In general, the method of enzymatic cyanohydrin synthesis promises to be of considerable value in asymmetric synthesis because of the synthetic potential offered by the rich chemistry of enantiomerically pure cyanohydrins, including their stereoselective conversion into other classes of compounds such as a-hydroxy carboxylic acids or respective esters, w c-diols, / -aminoalcohols, aziridins, a-azido(amino/fluoro)nitriles, and acyloins [501, 516]. [Pg.171]

There are many routes available for the synthesis of aziridine 2-carboxylic acids, however there are few reactions which yield enantiomerically pure products. These compounds (especially those with cis-stereochemistry) are especially useful for the synthesis of bioactive molecules556. There is thus significant effort in this area of synthesis557,558, but most methods are lengthy multistep procedures. Recently, a simple, one-pot procedure, utilizing imines, has been developed for the asymmetric synthesis of c/s-N-substituted aziridine-2-carboxylic acids via a Darzens-type reaction (equation 154)559. [Pg.749]

DA Evans, MM Morrissey, RL Dorow. Asymmetric oxidation of chiral imide eno-lates. A general approach to the synthesis of enantiomerically pure a-hydroxy carboxylic acids. J Am Chem Soc 107 4346-4348, 1985. [Pg.206]

W Adam, W Boland, J Hartmann-Schreier, H-U Humpf, M Lazarus, A Saffert, CR Saha-Moller, P Schreier. a Hydroxylation of carboxylic acids with molecular oxygen catalyzed by the a oxidase of peas (Pisum sativum) a novel biocatalytic synthesis of enantiomerically pure (R)-2-hydroxy acids. J Am Chem Soc 120 11044— 11048, 1998. [Pg.207]

The synthetic application of the a-chloro aldehydes has been demonstrated by the preparation of a variety of important chiral building blocks (Scheme 2.35) [26b]. The a-chloro aldehydes could be reduced to the corresponding optically active a-chloro alcohols in more than 90% yield, maintaining the enantiomeric excess by using NaBFU. It was also shown that optically active 2-aminobutanol - a key intermediate in the synthesis of the tuberculostatic, ethambutol - could be obtained in high yields by standard transformations from 2-chlorobutanol. Furthermore, the synthesis of an optically active terminal epoxide was demonstrated. The 2-chloro aldehydes could also be oxidized to a-chloro carboxylic acids in high yields without loss of optical purity, and further transformations were also presented. [Pg.70]

Fig. 13.42. Helmchen synthesis of enantiomerically pure a-alkylated carboxylic acids. The deprotonation of the propionic acid ester results in the "f "-enolate in the solvent THF and in the "Z"-enoLate in the solvent mixture THF/HHPA. In these projections, both enolates react preferentially from the front. The "f" -enolate results in a 97 3 mixture of 5- and fi-configured a-benzyl-propionic acid esters (X marks the chiral alkoxide group), while the "Z"-enolate results in a 5 95 mixture. Chromatographic separation and reduction of the C(=0)—Xc groups afford alcohol B with 100% ee from the " "-enolate and alcohol ent-B with 100% ee from the "Z"-enolate. Fig. 13.42. Helmchen synthesis of enantiomerically pure a-alkylated carboxylic acids. The deprotonation of the propionic acid ester results in the "f "-enolate in the solvent THF and in the "Z"-enoLate in the solvent mixture THF/HHPA. In these projections, both enolates react preferentially from the front. The "f" -enolate results in a 97 3 mixture of 5- and fi-configured a-benzyl-propionic acid esters (X marks the chiral alkoxide group), while the "Z"-enolate results in a 5 95 mixture. Chromatographic separation and reduction of the C(=0)—Xc groups afford alcohol B with 100% ee from the " "-enolate and alcohol ent-B with 100% ee from the "Z"-enolate.
Fig. 13.43. Evans synthesis of enantiomerically pure a-alkylated carboxylic acids. Fig. 13.43. Evans synthesis of enantiomerically pure a-alkylated carboxylic acids.
The alkylations of the oxazolidinone-containing amide enolate of Figure 13.43 occur with diastereoselectivities of 93 7 and > 99 1, respectively. The hydrogen peroxide-accelerated alkaline hydrolysis of these compounds occurs with complete retention of the previously established configuration at the a-stereocenter. To date, the Evans synthesis offers the most versatile access to enantiomerically pure a-alkylated carboxylic acids. [Pg.558]

During the development of rivaroxaban 1, Pleiss et al. at Bayer Health Care prepared [14C]-radiolabeled rivaroxaban,22 which was required for clinical studies of drug absorption, distribution, metabolism, and excretion (ADME studies). The approach taken for the synthesis of l4C labeled rivaroxaban 38 relies on the previously reported synthesis. In the presence of EDC HCl and HOBT, 4- 4-[5S)-5-(aminomethyl)-2-oxo-l,3-oxazolidin-3-yl]phenyl -morpholin-3-one 22 was coupled with 5-chloro-2-thiophene [14C]-carboxylic acid 37 and was purified using chiral HPLC to afford the [l4C]-radiolabelled rivaroxaban 38 in 85% yield with high chemical and radiochemical purity and with an enantiomeric excess of > 99% ee (Scheme 5). Meanwhile, the metabolite M-4 of rivaroxaban (compound 39) was prepared from 5-chlorothiophenecarboxylic acid chloride 23 and [14C]glycine in 77% yield (Scheme 6). [Pg.202]

The asymmetric synthesis of enantiomerically pure primary amines has received considerable attention in recent years due to applications of the chiral amines, either as chiral auxiliaries for the synthesis of optically active molecules [33] or as a deri-vatizing agent for the resolution of racemic carboxylic acids [34], Hydroboration -amination is also a convenient synthetic route to epimerically clean amine derivatives in a simple one-stage reaction. Interestingly, rrans-2-phenylcyclopentylamine (cypenamine), which is an antidepressant [35], can be obtained as a pure isomer in good yields by the hydroboration of 1-methylcyclopentene [7,10,36] (Scheme 13). [Pg.45]

Fig. 10.38. Evans synthesis of enantiomerically pure a-alkylated carboxylic acids. The amides are derived from oxazolidinones and yield Z -enolates with high stereoselectivity. The alkylating agent attacks in both cases from the side that is opposite to the side of the substituent highlighted in red. Fig. 10.38. Evans synthesis of enantiomerically pure a-alkylated carboxylic acids. The amides are derived from oxazolidinones and yield Z -enolates with high stereoselectivity. The alkylating agent attacks in both cases from the side that is opposite to the side of the substituent highlighted in red.

See other pages where Carboxylic acids enantiomeric synthesis is mentioned: [Pg.41]    [Pg.41]    [Pg.34]    [Pg.124]    [Pg.110]    [Pg.4]    [Pg.854]    [Pg.284]    [Pg.295]    [Pg.295]    [Pg.142]    [Pg.112]    [Pg.125]    [Pg.37]    [Pg.880]    [Pg.528]    [Pg.270]    [Pg.110]    [Pg.210]    [Pg.171]    [Pg.220]    [Pg.27]    [Pg.467]    [Pg.473]   


SEARCH



Carboxylate, synthesis

Carboxylic acids, a-hydroxyasymmetric synthesis enantiomerically enriched

Carboxylic synthesis

Enantiomerically synthesis

© 2024 chempedia.info