Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylated polyester additives

Carboxylated Polyester Additives for Improving the Adhesion of Coatings... [Pg.572]

The presence of a plasticizer in addition to the carboxylated polyester adversely affected the adhesion of some of the polymers—e.g., cellulose acetate butyrate and poly (vinyl chloride) plastisols. [Pg.580]

Adipic acid, 219.2 g (1.5 mol), and 77.6 g (1.25 mol) of 1,2-ethanediol are weighed into a 500-mL glass reactor equipped with a mechanical stirrer, a nitrogen inlet, and a distillation head connected to a condenser and a receiver fiask. The reactor is placed in a salt bath preheated at 180°C and the temperature is dien raised gradually to 220°C (see note at end of procedure) until the greater part of water has been removed (3 h). The reactor is cooled down to 160°C and vacuum is applied slowly to ca. 0.07 mbar (30 min). Temperature is ramped to 220°C (see note below) at a rate of l°C/min and reaction is continued for an additional 90 min. At the end of reaction, the carboxylic acid endgroup content is close to 1.90 mol/kg. No purification of final polyester is carried out. [Pg.95]

An implication of the kinetic analysis presented in Sec. IV.A is that the rate of chain scission of polyesters can be retarded by endcapping to reduce the initial carboxylic acid end-group concentration. Alternatively, the rate may be increased by acidic additives that supplement the effect of the carboxy end groups. The first expectation was confirmed by partial ethanolysis of high molecular weight... [Pg.106]

End-functional polymers were also synthesized by lipase-catalyzed polymerization of DDL in the presence of vinyl esters [103,104]. The vinyl ester acted as terminator ( terminator method ). In using vinyl methacrylate (12.5 mol % or 15 mol % based on DDL) and lipase PF as terminator and catalyst, respectively, the quantitative introduction of methacryloyl group at the polymer terminal was achieved to give the methacryl-type macromonomer (Fig. 12). By the addition of divinyl sebacate, the telechelic polyester having a carboxylic acid group at both ends was obtained. [Pg.254]

The SSP behavior of co-polyesters with rigid or voluminous comonomers, such as the flame retardant additive 9,10-dihydro[2,3-di-9-oxa-(2-hydroxyethoxy)-carbonylpropyl]-10-phosphaphenanthrene-10-oxide, or the ionic compound, sodium 5-sulfoisophthalate, is inhibited. This also occurs in the melt phase and cannot be improved by the use of catalysts [56], The results of studies examining the influence of employed catalysts with respect to stability and quality of the polymer suggest the use of antimony catalysts. The thermal or thermo-oxidative stability is, however, reduced by the interaction of the catalyst with the carboxylic groups of the polymer [57],... [Pg.229]

Aromatic carboxylic dianhydride chain extenders (e.g. PMDA) are a low-cost way of converting recycled PET flakes into high-IV crystalline pellets that can be used in high-value applications (e.g. bottles, strapping, foam, engineering alloys/compounds, etc.) (see Figure 14.2). PMDA is an effective chain extension additive for thermoplastic polyesters such as PET and PBT. It is suitable for the following applications ... [Pg.500]

Acrylic acid [79-10-7] - [AIR POLLUTION] (Vol 1) - [ALDEHYDES] (Vol 1) - [ALLYL ALCOHOL AND MONOALLYL DERIVATIVES] (Vol 2) - [MALEIC ANHYDRIDE, MALEIC ACID AND FUMARIC ACID] (Vol 15) - [POLYESTERS, UNSATURATED] (Vol 19) - [FLOCCULATING AGENTS] (Vol 11) - [CARBOXYLICACIDS - SURVEY] (Vol 5) -from acetylene [ACETYLENE-DERIVED CHEMICALS] (Vol 1) -from acrolein [ACROLEIN AND DERIVATIVES] (Vol 1) -acrylic esters from [ACRYLIC ESTER P OLYMERS - SURVEY] (Vol 1) -from carbon monoxide [CARBON MONOXIDE] (Vol 5) -C-21 dicarboxylic acids from piCARBOXYLIC ACIDS] (Vol 8) -decomposition product [MAT. ETC ANHYDRIDE, MALEIC ACID AND FUMARIC ACID] (Vol 15) -economic data [CARBOXYLIC ACIDS - ECONOMIC ASPECTS] (Vol 5) -ethylene copolymers [IONOMERS] (Vol 14) -in floor polishes [POLISHES] (Vol 19) -in manufacture of ion-exchange resins [ION EXCHANGE] (V ol 14) -in methacrylate copolymers [METHACRYLIC POLYMERS] (Vol 16) -in papermaking [PAPERMAKING ADDITIVES] (Vol 18)... [Pg.12]

Impact resistance of carbon-fiber composites or GRP with the three-component polymer matrix can be improved by the incorporation of a terephthalic acid/neo-pentyl glycol polyester [117], The polyester was carboxyl terminated by the addition of trimellitic anhydride to the terminal hydroxyls [118],... [Pg.55]

In the literature, two additional reactions following addition esterification have been treated using the cascade theory the addition esterification followed by polyetherification with epoxide groups in excess (a reaction used for crosslinking of carboxyl terminated polydienes) and addition esterification followed by transesterification. Transesterification often interferes wherever hydroxyester groups are formed, for example, in synthesis of linear oligomeric polyesters from diepoxide and acids. As has been explained before, polyetherification is an initiated reaction and, therefore, the statistical treatment offerend in Refs. should be revised. Below we show the treatment of transesterification for a system composed of a diepoxide and a dicar boxylic acid. [Pg.49]

To overcome these drawbacks, in recent years much attention has been paid to the development of resins which cem be f2d ricated with the same processes as those for conventional polyester resins, but having superior properties. Vinyl ester resins are the result of such development efforts (4-6). Vinyl ester resins are addition products of Vcurious epoxide resins and ethylenically unsaturated mono-carboxylic acids ( ). It condsines the excellent mechcuiical, chemical cuid solvent resistemce of epoxy resins with the properties found in the unsaturated polyester resins. In general, the cured vinyl ester resin has physical properties superior to the cured conventional ester resin, particulcurly corrosion resistcuice. This arises from the differences in the number and arremgement of polar groups such as ester and hydroxyl groups eind ccurbon-to-ccirbon double bonds present in the polymer chains. [Pg.202]

The polyester type polyols used in polyurethane laminating adhesives are produced by the direct esterification of polyfunctional carboxylic acids and glycols. Polyester polyols provide the soft segment in polyurethane products giving the adhesive flexibility. Ester groups of the polyol also contribute to adhesion. Polyester polyols provide limited wetting and adhesion of olefinic surfaces with amide slip additives (in contrast to polyether polyols). Typical examples include adipic acid, caprolactone, maleic acid and isophthalic based polyester polyols. [Pg.355]

Polyurethanes are obtained by the reaction of polyisocyanates with polyhydroxy compounds, such as polyethers, polyesters, castor oil and glycols. Compounds containing groups such as amino and carboxyl groups may also be used. Thus a typical polyurethane may contain, in addition to urethane groups, ahphatic and aromatic hydrocarbon residues and ester, ether, amide and urea groups. [Pg.44]

Unsaturated polyesters with terminal hydroxyl or carboxyl groups can also react at the same time with isocyanate groups and a vinyl monomer, such as styrene, to produce hybrid polymers. Two kinds of reactions, the NCO-OH addition reaction and radical polymerization by the vinyl groups, can occur. In parallel to the two reactions, interference between the two reactions also can occur. Detailed studies on the interference reactions were studied by Hsu et al. (190). [Pg.86]


See other pages where Carboxylated polyester additives is mentioned: [Pg.422]    [Pg.144]    [Pg.32]    [Pg.7]    [Pg.791]    [Pg.75]    [Pg.24]    [Pg.153]    [Pg.189]    [Pg.158]    [Pg.81]    [Pg.205]    [Pg.497]    [Pg.504]    [Pg.545]    [Pg.237]    [Pg.201]    [Pg.268]    [Pg.106]    [Pg.90]    [Pg.78]    [Pg.269]    [Pg.358]    [Pg.192]    [Pg.247]    [Pg.116]    [Pg.329]    [Pg.510]    [Pg.159]    [Pg.197]    [Pg.461]    [Pg.1149]    [Pg.1496]    [Pg.133]    [Pg.268]    [Pg.78]    [Pg.791]   
See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Carboxylated polyester

© 2024 chempedia.info