Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbopalladation stable reactions

Facile reaction of a carbon nucleophile with an olefinic bond of COD is the first example of carbon-carbon bond formation by means of Pd. COD forms a stable complex with PdCl2. When this complex 192 is treated with malonate or acetoacetate in ether under heterogeneous conditions at room temperature in the presence of Na2C03, a facile carbopalladation takes place to give the new complex 193, formed by the introduction of malonate to COD. The complex has TT-olefin and cr-Pd bonds. By the treatment of the new complex 193 with a base, the malonate carbanion attacks the cr-Pd—C bond, affording the bicy-clo[6.1,0]-nonane 194. The complex also reacts with another molecule of malonate which attacks the rr-olefin bond to give the bicyclo[3.3.0]octane 195 by a transannulation reaction[l2.191]. The formation of 194 involves the novel cyclopropanation reaction of alkenes by nucleophilic attack of two carbanions. [Pg.47]

The transmetallation of various organometallic compounds (Hg, Tl, Sn, B, Si, etc.) with Pd(II) generates the reactive cr-aryl, alkenyl, and alkyl Pd compounds. These carbopalladation products can be used without isolation for further reactions. Pd(II) and Hg(II) salts have similar reactivity toward alkenes and aromatic compounds, but Hg(II) salts form stable mercuration products with alkenes and aromatic rings. The mercuration products are isolated and handled easily. On the other hand, the corresponding palladation products are too reactive to be isolated. The stable mercuration products can be used for various reactions based on facile transmetallation with Pd(II) salts to generate the very reactive palladation products 399 and 400 in rim[364,365]. [Pg.79]

Ma and Zhao reported a highly regio- and diastereoselective synthetic method for 2-amino-3-alken-l-ols and 4-amino-2-( )-alken-l-ols by the palladium-catalyzed reaction of 2,3-allenols, aryl iodides and amines (Scheme 16.24) [29]. Carbopalladation of PhPdl to the allene probably generates a thermodynamically more stable anti-Jt-allylpalladium species for steric reasons. Regioselectivity of the amine attack depends largely on the stereoelectronic effect on the a-substituents. [Pg.934]

While the PNP dimer was an efficient catalyst for the ort/toalkylation/ Mizoroki-Heck reaction, the practicality of the transformation is lessened by the fact that the PNP dimer is not commercially available, and can be quite difficult to prepare. Thus, Catellani adapted the reaction conditions to include commercially available and air-stable Pd(OAc)2 as the catalyst source [46], Under these conditions, the ortho-u kylation/Mizoroki-I Ieck coupling of aryl iodides containing a pre-existing ortho substituent could be carried out. The reaction required higher temperatures, and the addition of KOAc to promote the carbopalladation of norbomene [47] and encourage the o/t/zo-alkylation pathway vs a direct Mizoroki-Heck coupling. [Pg.15]

Whereas alkene insertion is followed by facile dehydropalladation whenever there is a /S-hydrogen to afford alkenes and Pd(0) catalytic species, the alkyne insertion produces the thermally stable alkenylpalladium species 2 and 7, which can not be terminated by themselves and further transformations are required in order to terminate the reactions and to regenerate Pd(0) species for catalytic recycling. In other words, it is generally believed that the reaction of generated alkenylpalladium species 2 and 7 can not be terminated, because the f-R elimination (formation of alkynes or allenes) even in the presence of a /1-hydrogen is not possible. Therefore the carbopalladation of alkynes is a living process, in which alkynes play a role of relay to pass the ability of carbon-carbon bond formation to other reactants. [Pg.232]

A cascade Heck reaction with termination by nucleophiles is considered to start with an oxidative addition of a heteroatom-carbon bond (starter) onto a palladium(O) species (startup reaction), followed by carbopalladation of a nonaromatic carbon-carbon double or triple bond without subsequent dehydropalladation (relay), a second and possibly further carbopalladation of a carbon-carbon double or triple bond (second etc. relay). The terminating step is a displacement of the palladium residue by an appropriate nucleophile. It is crucial for a successful cascade carbopalladation that no premature dehydropalladation takes place, and that can be prevented by using alkynes and 1,1-disubstituted alkenes (or certain cycloalkenes) as relay stations since they give kinetically stable alkenyl- or neopentylpalladium intermediates, respectively. In addition, reaction of haloalkenes with alkenes in certain cases may form rr-allyl complexes, which are then trapped by various nucleophiles. [Pg.1405]

The reaction, initiated by carbopalladation of the aryne by stable ir-allylpalladium intermediates, is followed by the insertion of a second molecule of aryne into the arylpalladium bond and subsequent intramolecular carbopalladation of the alkene by the newly formed biarylpalladium species. When the second equivalent of aryne is replaced with an internal alkyne, naphthalene 236 is formed in a 47% yield (Equation 12.61). [Pg.457]

An interesting sequential reaction, consisting of an intermolecular alkene carbometallation and subsequent intermolecular alkyne cross-coupling, has been reported (Scheme 8.87) [601]. Starting from an immobihzed tropane framework 459, stoichiometric carbopalladation yields a stable organopalladium intermediate, which in the presence of copper(I) iodide undergoes coupling with an added terminal acetylene. [Pg.623]

A closely related reaction has been developed on homoallylic amines and sulfides. These substrates undergo regiospecific carbopalladation in the presence of stabilized enolates and lithium tetrachloropalladate to provide stable five-membered paUadacycles. Reduction of the complexes 9 and 10, respectively, affords the alkylated diester 11 and keto ester 12 (Scheme 8). [Pg.605]

Domino or cascade reactions provide valuable approaches, especially to various carbo- and heterocyclic systems with three, four, or even more annelated rings. The Heck reaction has successfully been employed in various inter-inter-, intra-inter-, inter-intra-, as well as all-intramolecular reaction cascades, hi this section, the termination of these processes by alkenes, arenes, and related ir-bond systems such as alkynes and allenes will be described. A cascade Heck reaction is considered to consist of an oxidative addition of a heteroatom-carbon bond to palladium (starter), carbopalladation of a nonaromatic carbon-carbon double or triple bond without immediate dehydropalladation (relay), one, two, or more fimher car-bopalladation(s) of a carbon-carbon double or triple bond, and eventually ensuing dehydropalladation. Crucial for a cascade reaction of this kind to occur is the blockage or retardation of a dehydropalladation at one of the intermediate stages by using 1,1-disubsti-tuted alkenes and appropriately substimted cycloalkenes, bicycloalkenes, or alkynes as relays since they give kinetically stable alkyl- or alkenylpalladium intermediates, respectively. [Pg.1369]


See other pages where Carbopalladation stable reactions is mentioned: [Pg.178]    [Pg.96]    [Pg.903]    [Pg.50]    [Pg.11]    [Pg.16]    [Pg.21]    [Pg.26]    [Pg.20]    [Pg.370]    [Pg.136]    [Pg.1369]    [Pg.1551]    [Pg.507]    [Pg.568]    [Pg.11]    [Pg.16]    [Pg.136]    [Pg.1551]    [Pg.96]    [Pg.97]    [Pg.57]   
See also in sourсe #XX -- [ Pg.1317 , Pg.1318 ]




SEARCH



Carbopalladations

© 2024 chempedia.info