Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonylation secondary amine

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

Carbonylation of halides in the presence of primary and secondary amines at I atm affords amides[351j. The intramolecular carbonylation of an aryl bromide which has amino group affords a lactam and has been used for the synthesis of the isoquinoline alkaloid 498(352], The naturally occurring seven-membered lactam 499 (tomaymycin, neothramycin) is prepared by this method(353]. The a-methylene-d-lactam 500 is formed by the intramolecular carbonylation of 2-bromo-3-alkylamino-l-propene(354]. [Pg.196]

Primary amines undergo nucleo philic addition to the carbonyl group of aldehydes and ketones to form carbinol amines These carbinolamines dehydrate under the conditions of their formation to give N substituted imines Secondary amines yield enamines... [Pg.927]

Secondary amines are prepared by hydrogenation of a carbonyl compound m the presence of a primary amine An N substituted mine or Schijfs base is an intermediate... [Pg.934]

Reductive amination has been successfully applied to the preparation of tertiary amines from carbonyl compounds and secondary amines even though a neutral mine is not possible m this case... [Pg.934]

The amide nitrogen readily adds across the carbonyl group of an aldehyde yielding N-hydroxyalkyl-substituted pyrrohdinones (68), eg, A/-methylol-2-pyrrohdinone [15438-71-8] (34). In the presence of secondary amines or alcohols, the hydroxyl groups are replaced (69), eg, if diethylamine is present the product is A/-diethylaminomethyl-2-pyrrohdinone [66297-50-5] (35). [Pg.360]

Alkoxy-2,l-benzisoxazole-4,7-diones undergo ready nucleophilic displacement of the 3-alkoxy substituent, yielding 3-alkylamino and 3-dialkylamino derivatives with primary and secondary amines, respectively (67TL4313). In this instance the 4-carbonyl group apparently provides an activating effect. [Pg.57]

Secondary amines cannot form imines, and dehydration proceeds to give carbon-carbon double bonds bearing amino substituents (enamines). Enamines were mentioned in Chapter 7 as examples of nucleophilic carbon species, and their synthetic utility is discussed in Chapter 1 of Part B. The equilibrium for the reaction between secondary amines and carbonyl compounds ordinarily lies far to the left in aqueous solution, but the reaction can be driven forward by dehydration methods. [Pg.461]

Diisopropanolamine Systems. Diisopropanolamine (DIPA) is a secondary amine used in the Shell ADIP process to sweeten natural gas. DIPA systems are similar to MEA systems but offer the following ad an-tages carbonyl sulfide (COS) can be removed and regenerated easily and the system is generally noncorrosive and requires less heat input. [Pg.166]

If a molecule contains both a ketonic and aldehydic carbonyl group, a secondary amine will react with the aldehydic carbonyl group to give a -enamino ketone (15). This has been shown not only for 2-formylcyclo-hexanone (14) (32,33) but also in steroidal systems when the aldehyde and ketone groups are in five- or six-membered rings (34). [Pg.59]

Hydrolysis of simple enamines appears to be very easy and decomposition to the corresponding carbonyl compound and the secondary amine can be achieved readily by adding water to these compounds. Basicity as well as... [Pg.101]

Hydrolysis of an enamine yields a carbonyl compound and a secondary amine. Only a few rate constants are mentioned in the literature. The rate of hydrolysis of l-(jS-styryl)piperidine and l-(l-hexenyl)piperidine have been determined in 95% ethanol at 20°C 13). The values for the first-order rate constants are 4 x 10 sec and approximately 10 sec , respectively. Apart from steric effects the difference in rate may be interpreted in terms of resonance stabilization by the phenyl group on the vinyl amine structure, thus lowering the nucleophilic reactivity of the /3-carbon atom of that enamine. [Pg.103]

A recent adaptation of the procedure employing perchlorate and fluoro-borate salts has been reported by Leonard and Paukstelis (J5). This report includes proof of structure by direct comparison to iminium salts prepared by protonation of enamines. The general reaction reported was that of a ketone or aldehyde with a secondary amine perchlorate to give iminium salts. A large structural variety of carbonyl compounds and several amine... [Pg.176]

The synthetic utility of enamines presupposes their general accessibility. In most cases, ketones are readily converted to enamines by condensation of the carbonyl compound with a secondary amine such as pyrrolidine, morpholine, or piperidine and azeotropic removal of water with a solvent such as benzene (3-19). [Pg.315]

Enamines derived from aldehydes can usually be obtained by the reaction of 2 equivalents of a secondary amine with the carbonyl compound, in the presence of anhydrous potassium carbonate, followed by pyrolytic distillation of the aminal with elimination of one of the amine groups (10,15, 30-36). Ketones are directly converted to enamines under the conditions of aminal formation. The azeotropic removal of water with excess aldehyde has also been described (32,37). [Pg.317]

While the usual eonsequence of hydration of enamines is eleavage to a secondary amine and an aldehyde or ketone, numerous cases of stable carbinolamines are known (102), particularly in examples derived from cyclic enamines. The selective terminal hydration (505) of a cross-conjugated dienamine-vinylogous amide is an interesting example which gives an indication of the increased stabilization of the vinylogous amide as compared to simple enamines, which is also seen in the decreased nucleophilicity of the conjugated amino olefin-carbonyl system. [Pg.418]

The formation of enamines from carbonyl compounds and secondary amines usually entails as only questionable structural feature, the possible isomeric position of double bonds in the product. Molecular rearrangements have not presented synthetic limitations. A notable exception is the generation of o-aminophenols on distillation of enamines derived from 2-acylfurans 620,621). [Pg.447]

A primary or secondary amine can be used, as well as ammonia. With respect to the carbonyl component used, the best results have been obtained with aromatic aldehydes and with high boiling ketones. [Pg.188]

Reductive cleavage of phenylhydrazones of carbonyl compounds provides a route to amines. The reduction is carried out conveniently in ethanol containing ammonia over palladium-on-carbon. Ammonia is used to minimize formation of secondary amines, derived by addition of the initially formed amine to the starting material (160). Alternatively, a two-phase system of benzene, cyclohexane, toluene, or dioxane and aqueous hydrochloric acid can be used. [Pg.169]

The end group of the polymers, photoinitiated with aromatic amine with or without the presence of carbonyl compound BP, has been detected with absorption spectrophotometry and fluororescence spectrophotometry [90]. The spectra showed the presence of tertiary amino end group in the polymers initiated with secondary amine such as NMA and the presence of secondary amino end group in the polymers initiated with primary amine such as aniline. These results show that the amino radicals, formed through the deprotonation of the aminium radical in the active state of the exciplex from the primary or secondary aromatic amine molecule, are responsible for the initiation of the polymerization. [Pg.239]

An aldehyde or ketone reacts with a primary amine, RNH.2, to yield an imine, in which the carbonyl oxygen atom has been replaced by the =N-R group of the amine. Reaction of the same aldehyde or ketone with a secondary amine, R2NH, yields an enamine, in which the oxygen atom has been replaced by the -NR2 group of the amine and the double bond has moved to a position between the former carbonyl carbon and the neighboring carbon. [Pg.714]

The most widely employed methods for the synthesis of nitrones are the condensation of carbonyl compounds with A-hydroxylamines5 and the oxidation of A+V-di substituted hydroxylamines.5 9 Practical and reliable methods for the oxidation of more easily available secondary amines have become available only recently.10 11 12 13. These include reactions with stoichiometric oxidants not readily available, such as dimethyldioxirane10 or A-phenylsulfonyl-C-phenyloxaziridine,11 and oxidations with hydrogen peroxide catalyzed by Na2W044 12 or Se02.13 All these methods suffer from limitations in scope and substrate tolerance. For example, oxidations with dimethyldioxirane seem to be limited to arylmethanamines and the above mentioned catalytic oxidations have been reported (and we have experienced as well) to give... [Pg.108]

The Mannich condensation has traditionally been carried out in the presence of water as a three-component condensation involving a carbonyl compound (or related carbon nucleophile), formaldehyde, and a primary or secondary amine. The initial step is a condensation between the latter two reactants to form a mono- or dialkyl(methylene)ammonium ion which subsequently serves as the electrophilic partner in the reaction. With unsymmetrical ketones aminomethylation generally occurs at both positions to give mixtures of isomeric 3-amino ketones. The ratio of the isomers depends strongly on the structure of the ketone, and the more highly branched (3-amino ketone usually predominates. [Pg.79]

In the first step, a resin-bound secondary amine is acylated with bromoacetic acid, in the presence of N,N-diisopropylcarbodiimide. Acylation of secondary amines is difficult, especially when coupHng an amino acid with a bulky side chain. The sub-monomer method, on the other hand, is facilitated by the use of bromoacetic acid, which is a very reactive acylating agent Activated bromoacetic acid is bis-reactive, in that it acylates by reacting with a nucleophile at the carbonyl carbon, or it can alkylate by reacting with a nucleophile at the neighboring ah-phatic carbon. Because acylation is approximately 1000 times faster than alkylation, acylation is exclusively observed. [Pg.4]


See other pages where Carbonylation secondary amine is mentioned: [Pg.461]    [Pg.461]    [Pg.1026]    [Pg.198]    [Pg.94]    [Pg.135]    [Pg.482]    [Pg.170]    [Pg.92]    [Pg.63]    [Pg.206]    [Pg.249]    [Pg.82]    [Pg.736]    [Pg.1020]    [Pg.290]    [Pg.175]    [Pg.685]    [Pg.786]    [Pg.1189]    [Pg.1567]    [Pg.20]    [Pg.45]    [Pg.51]    [Pg.55]   
See also in sourсe #XX -- [ Pg.486 ]




SEARCH



Amination carbonylative

Amination secondary

Amines carbonylations

Amines secondary

Carbonyl amination

© 2024 chempedia.info