Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds metal catalysis

The sonochemistry of solutes dissolved in organic Hquids also remains largely unexplored. The sonochemistry of metal carbonyl compounds is an exception (57). Detailed studies of these systems led to important mechanistic understandings of the nature of sonochemistry. A variety of unusual reactivity patterns have been observed during ultrasonic irradiation, including multiple ligand dissociation, novel metal cluster formation, and the initiation of homogeneous catalysis at low ambient temperature (57). [Pg.262]

I 8 Carbonyl Compounds as Metallic Precursors of Tailored Supported Catalysis... [Pg.324]

Iron carbonyls have been also used to fabricate nanostructures of potential use in catalysis. In this context, the preparation at room temperature of nano-sized a-Fe single crystals over carbon micro-grid films has been reported. The particles were prepared by electron beam induced deposition using Fe(CO)s as precursor [77]. The use of a focused electron beam to induce metal deposition from carbonyl compounds opens a new route for the preparation of nano-sized metal particles. [Pg.325]

Mannich reactions give rise to (i-amino carbonyl compounds which are amenable to further synthetic manipulations. Numerous stereoselective variants have been achieved by means of different types of catalysts including both metal complexes and organic molecules. In 2004, the groups of Akiyama and Terada independently selected this transformation as a model reaction for the introduction of a novel chiral motif to asymmetric catalysis [14, 15]. [Pg.399]

Our own group is also involved in the development of domino multicomponent reactions for the synthesis of heterocycles of both pharmacologic and synthetic interest [156]. In particular, we recently reported a totally regioselective and metal-free Michael addition-initiated three-component substrate directed route to polysubstituted pyridines from 1,3-dicarbonyls. Thus, the direct condensation of 1,3-diketones, (3-ketoesters, or p-ketoamides with a,p-unsaturated aldehydes or ketones with a synthetic equivalent of ammonia, under heterogeneous catalysis by 4 A molecular sieves, provided the desired heterocycles after in situ oxidation (Scheme 56) [157]. A mechanistic study demonstrated that the first step of the sequence was a molecular sieves-promoted Michael addition between the 1,3-dicarbonyl and the cx,p-unsaturated carbonyl compound. The corresponding 1,5-dicarbonyl adduct then reacts with the ammonia source leading to a DHP derivative, which is spontaneously converted to the aromatized product. [Pg.262]

Iron pentacarbonyl is the most important carbonyl compound of iron. It is used primarily to produce finely divided iron metal. Other apphcations are in catalysis of organic reactions in ceramics as an anti-knock in gasohne and in production of red iron oxide pigment. Other carbonyls of iron have very few commercial apphcations. [Pg.417]

Meerwein-Pondorf-Verley reduction, discovered in the 1920s, is the transfer hydrogenation of carbonyl compounds by alcohols, catalyzed by basic metal compounds (e.g., alkoxides) [56-58]. The same reaction viewed as oxidation of alcohols [59] is called Oppenauer oxidation. Suitable catalysts include homogeneous as well as heterogeneous systems, containing a wide variety of metals like Li, Mg, Ca, Al, Ti, 2r and lanthanides. The subject has been reviewed recently [22]. In this review we will concentrate on homogeneous catalysis by aluminium. Most aluminium alkoxides will catalyze MPV reduction. [Pg.158]

In addition to the successful reductive carbonylation systems utilizing the rhodium or palladium catalysts described above, a nonnoble metal system has been developed (27). When methyl acetate or dimethyl ether was treated with carbon monoxide and hydrogen in the presence of an iodide compound, a trivalent phosphorous or nitrogen promoter, and a nickel-molybdenum or nickel-tungsten catalyst, EDA was formed. The catalytst is generated in the reaction mixture by addition of appropriate metallic complexes, such as 5 1 combination of bis(triphenylphosphine)-nickel dicarbonyl to molybdenum carbonyl. These same catalyst systems have proven effective as a rhodium replacement in methyl acetate carbonylations (28). Though the rates of EDA formation are slower than with the noble metals, the major advantage is the relative inexpense of catalytic materials. Chemistry virtually identical to noble-metal catalysis probably occurs since reaction profiles are very similar by products include acetic anhydride, acetaldehyde, and methane, with ethanol in trace quantities. [Pg.147]

Nickel and other transition metal catalysts, when modified with a chiral compound such as (R,R)-tartaric acid 5S), become enantioselective. All attempts to modify solid surfaces with optically active substances have so far resulted in catalysts of only low stereoselectivity. This is due to the fact that too many active centers of different structures are present on the surface of the catalysts. Consequently, in asymmetric hydrogenations the technique of homogeneous catalysis is superior to heterogeneous catalysis56). However, some carbonyl compounds have been hydrogenated in the presence of tartaric-acid-supported nickel catalysts in up to 92% optical purity55 . [Pg.174]

Noyori, R., Yamakawa, M. and Hashiquchi, S. Metal-Ligand Bifunctional Catalysis A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl Compounds. J. Org. Chem. 2001, 66, 7931-7944. [Pg.31]

Both acid and metal catalysis are usually required to accomplish hydration of alkynes to yield carbonyl compounds.34 The addition is usually regioselective, allowing for conversion of terminal alkynes to ketones. Hydration of acetylene to produce acetaldehyde used to be an industrially significant process but was replaced by the Wacker synthesis. [Pg.287]

Ojima and co-workers first reported the RhCl(PPh2)3-catalyzed hydrosilylation of carbonyl-containing compounds to silyl ethers in 1972.164 Since that time, a number of transition metal complexes have been investigated for activity in the system, and transition metal catalysis is now a well-established route for the reduction of ketones and aldehydes.9 Some of the advances in this area include the development of manganese,165 molybdenum,166 and ruthenium167 complex catalysts, and work by the Buchwald and Cutler groups toward extension of the system to hydrosilylations of ester substrates.168... [Pg.250]

The catalytic effect of metal ions such as Mg2+ and Zn2+ on the reduction of carbonyl compounds has extensively been studied in connection with the involvement of metal ions in the oxidation-reduction reactions of nicotinamide coenzymes [144-149]. Acceleration effects of Mg2+ on hydride transfer from NADH model compounds to carbonyl compounds have been shown to be ascribed to the catalysis on the initial electron transfer process, which is the rate-determining step of the overall hydride transfer reactions [16,87,149]. The Mg2+ ion has also been shown to accelerate electron transfer from cis-dialkylcobalt(III) complexes to p-ben-zoquinone derivatives [150,151]. In this context, a remarkable catalytic effect of Mg2+ was also found on photoinduced electron transfer reactions from various electron donors to flavin analogs in 1984 [152], The Mg2+ (or Zn2+) ion forms complexes with a flavin analog la and 5-deazaflavins 2a-c with a 1 1 stoichiometry in dry MeCN at 298 K [153] ... [Pg.143]

As demonstrated in this review, photoinduced electron transfer reactions are accelerated by appropriate third components acting as catalysts when the products of electron transfer form complexes with the catalysts. Such catalysis on electron transfer processes is particularly important to control the redox reactions in which the photoinduced electron transfer processes are involved as the rate-determining steps followed by facile follow-up steps involving cleavage and formation of chemical bonds. Once the thermodynamic properties of the complexation of adds and metal ions are obtained, we can predict the kinetic formulation on the catalytic activity. We have recently found that various metal ions, in particular rare-earth metal ions, act as very effident catalysts in electron transfer reactions of carbonyl compounds [216]. When one thinks about only two-electron reduction of a substrate (A), the reduction and protonation give 9 spedes at different oxidation and protonation states, as shown in Scheme 29. Each species can... [Pg.163]


See other pages where Carbonyl compounds metal catalysis is mentioned: [Pg.87]    [Pg.7181]    [Pg.109]    [Pg.488]    [Pg.62]    [Pg.121]    [Pg.227]    [Pg.208]    [Pg.242]    [Pg.364]    [Pg.270]    [Pg.1336]    [Pg.105]    [Pg.118]    [Pg.589]    [Pg.227]    [Pg.111]    [Pg.313]    [Pg.314]    [Pg.227]    [Pg.273]    [Pg.371]    [Pg.362]    [Pg.1441]    [Pg.157]    [Pg.362]    [Pg.145]    [Pg.84]    [Pg.143]   
See also in sourсe #XX -- [ Pg.6 , Pg.474 ]




SEARCH



Carbonyl compounds catalysis

Carbonyl compounds for metal catalysis

Carbonyl compounds metalation

Catalysis carbonylation

Catalysis compounds

© 2024 chempedia.info