Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds catalysis

For reduction of carbonyl compounds catalysis is necessary. One of the major contributing effects to enzymic catalysis is polarization of the carbonyl substrate by an electrophile (eq. 16), which is usually imidazole or a zinc ion embedded in the peptide chain... [Pg.128]

The sonochemistry of solutes dissolved in organic Hquids also remains largely unexplored. The sonochemistry of metal carbonyl compounds is an exception (57). Detailed studies of these systems led to important mechanistic understandings of the nature of sonochemistry. A variety of unusual reactivity patterns have been observed during ultrasonic irradiation, including multiple ligand dissociation, novel metal cluster formation, and the initiation of homogeneous catalysis at low ambient temperature (57). [Pg.262]

Chromium compounds decompose primary and secondary hydroperoxides to the corresponding carbonyl compounds, both homogeneously and heterogeneously (187—191). The mechanism of chromium catalyst interaction with hydroperoxides may involve generation of hexavalent chromium in the form of an alkyl chromate, which decomposes heterolyticaHy to give ketone (192). The oxidation of alcohol intermediates may also proceed through chromate ester intermediates (193). Therefore, chromium catalysis tends to increase the ketone alcohol ratio in the product (194,195). [Pg.343]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

Zn/EtOAc or THF, reflux, 3-12 h, 40-100% yield. It is more efficient to prepare this ketal by an exchange reaction with the dimethyl or diethyl ketal than directly from the carbonyl compound. Hydrolysis can eilso be effected by acid catalysis. [Pg.183]

Certain reactions between carbonyl compounds and nucleophiles are catalyzed by amines. Some of these reactions are of importance for forming carbon-carbon bonds, and these are discussed in Chapter 2 of Part B. The mechanistic principle can be illustrated by considering the catalysis of the reaction between aldehydes and hydroxylamine by aniline derivatives. [Pg.461]

Stereoselectivity in the condensation reaction of 2-arylethylamines with carbonyl compounds to give 1,2,3,4-tetrahydroisoquinoline derivatives was somewhat dependent on whether acid catalysis or superacid catalysis was invoked. Particularly in the cases of 2-alkyl-N-benzylidene-2-phenethylamines, an enhanced stereoselectivity was observed with trifluorosulfonic acid (TFSA) as compared with the weaker acid, trifluoroacetic acid (TFA). Compound 43 was cyclized in the presence of TFA to give modest to good transicis product ratios. The analogous compound 44 was cyclized in the presence of TFSA to give slightly improved transicis product ratios. [Pg.475]

The reaction can be performed with base catalysis as well as acid catalysis. The former is more common here the enolizable carbonyl compound 1 is depro-tonated at the a-carbon by base (e.g. alkali hydroxide) to give the enolate anion 5, which is stabilized by resonance ... [Pg.4]

By the end of this chapter, we will have seen all the common functional groups. Of those groups, amines and carbonyl compounds are the most abundant and have the richest chemistry. In addition to the proteins and nucleic acids already mentioned, the majority of pharmaceutical agents contain amine functional groups, and many of the common coenzymes necessary for biological catalysis are amines. [Pg.916]

Preparation of a-DiAzo Carbonyl Compounds via Phase Transfer Catalysis ... [Pg.171]

We conclude that the major role of bacteria in the nitrosa-tion of dimethylamine is the reduction of nitrate to nitrite and the lowering of the pH of the medium. Furthermore, the complex medium Itself catalyzes nitrosation. The nature of this catalysis is not known, although it could be due to the presence of carbonyl compounds, cysteine, or a variety of other compounds which are known to catalyze nitrosation (17). [Pg.163]

Corey, E.J. Helal, C.J. (1998) Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. Angewandte Chemie International Edition, 37, 1986-2012. [Pg.188]

Carbonyl reactions are extremely important in chemistry and biochemistry, yet they are often given short shrift in textbooks on physical organic chemistry, partly because the subject was historically developed by the study of nucleophilic substitution at saturated carbon, and partly because carbonyl reactions are often more difhcult to study. They are generally reversible under usual conditions and involve complicated multistep mechanisms and general acid/base catalysis. In thinking about carbonyl reactions, 1 find it helpful to consider the carbonyl group as a (very) stabilized carbenium ion, with an O substituent. Then one can immediately draw on everything one has learned about carbenium ion reactivity and see that the reactivity order for carbonyl compounds ... [Pg.4]

Rates of addition to carbonyls (or expulsion to regenerate a carbonyl) can be estimated by appropriate forms of Marcus Theory. " These reactions are often subject to general acid/base catalysis, so that it is commonly necessary to use Multidimensional Marcus Theory (MMT) - to allow for the variable importance of different proton transfer modes. This approach treats a concerted reaction as the result of several orthogonal processes, each of which has its own reaction coordinate and its own intrinsic barrier independent of the other coordinates. If an intrinsic barrier for the simple addition process is available then this is a satisfactory procedure. Intrinsic barriers are generally insensitive to the reactivity of the species, although for very reactive carbonyl compounds one finds that the intrinsic barrier becomes variable. ... [Pg.19]

Both these methods require equilibrium constants for the microscopic rate determining step, and a detailed mechanism for the reaction. The approaches can be illustrated by base and acid-catalyzed carbonyl hydration. For the base-catalyzed process, the most general mechanism is written as general base catalysis by hydroxide in the case of a relatively unreactive carbonyl compound, the proton transfer is probably complete at the transition state so that the reaction is in effect a simple addition of hydroxide. By MMT this is treated as a two-dimensional reaction proton transfer and C-0 bond formation, and requires two intrinsic barriers, for proton transfer and for C-0 bond formation. By NBT this is a three-dimensional reaction proton transfer, C-0 bond formation, and geometry change at carbon, and all three are taken as having no barrier. [Pg.20]

Various other Lewis acids have been explored as catalysts, and the combination InCl3-(CH3)3SiCl has been found to be effective.88 The catalysis requires both components and is attributed to assistance from O-silylation of the carbonyl compound. [Pg.815]

In 1991, Li and Chan reported the use of indium to mediate Barbier-Grignard-type reactions in water (Eq. 8.49).108 When the allylation was mediated by indium in water, the reaction went smoothly at room temperature without any promoter, whereas the use of zinc and tin usually requires acid catalysis, heat, or sonication. The mildness of the reaction conditions makes it possible to use the indium method to allylate a methyl ketone in the presence of an acid-sensitive acetal functional group (Eq. 8.50). Furthermore, the coupling of ethyl 2-(bromomethyl)acrylate with carbonyl compounds proceeds equally well under the same reaction conditions, giving ready access to various hydroxyl acids including, for example, sialic acids. [Pg.236]

Keywords Allylation Carbonyl compound Dienes Homoallylation Nickel catalysis Reductive coupling... [Pg.182]

Hydration is found to be susceptible to both general acid and general base (p. 74) catalysis, i.e. the rate-limiting step of the reaction involves either protonation of the carbonyl compound (general acid, 14), or conversion of H20 into the more nucleophilic OH (general base, 15) ... [Pg.208]

The reaction can, however, be made preparative for (91) by a continuous distillation/siphoning process in a Soxhlet apparatus equilibrium is effected in hot propanone over solid Ba(OH)2 (as base catalyst), the equilibrium mixture [containing 2% (91)] is then siphoned off. This mixture is then distilled back on to the Ba(OH)2, but only propanone (b.p. 56°) will distil out, the 2% of 2-methyl-2-hydroxypentan-4-one ( diacetone alcohol , 91, b.p. 164°) being left behind. A second siphoning will add a further 2% equilibrium s worth of (91) to the first 2%, and more or less total conversion of (90) — (91) can thus ultimately be effected. These poor aldol reactions can, however, be accomplished very much more readily under acid catalysis. The acid promotes the formation of an ambient concentration of the enol form (93) of, for example, propanone (90), and this undergoes attack by the protonated form of a second molecule of carbonyl compound, a carbocation (94) ... [Pg.225]


See other pages where Carbonyl compounds catalysis is mentioned: [Pg.488]    [Pg.412]    [Pg.228]    [Pg.488]    [Pg.495]    [Pg.121]    [Pg.227]    [Pg.87]    [Pg.208]    [Pg.685]    [Pg.463]    [Pg.8]    [Pg.122]    [Pg.364]    [Pg.145]    [Pg.685]    [Pg.75]    [Pg.105]    [Pg.270]    [Pg.1336]    [Pg.181]    [Pg.105]    [Pg.118]    [Pg.357]    [Pg.209]    [Pg.220]   
See also in sourсe #XX -- [ Pg.303 ]




SEARCH



Acid catalysis carbonyl compounds

Asymmetric phase-transfer catalysis carbonyl compounds

Carbonyl compounds Brpnsted base catalysis

Carbonyl compounds enamine catalysis

Carbonyl compounds for metal catalysis

Carbonyl compounds hydrogenation, homogeneous catalysis

Carbonyl compounds intramolecular catalysis

Carbonyl compounds metal catalysis

Carbonyl compounds oxidation, palladium catalysis

Carbonyl compounds phase-transfer catalysis

Carbonyl compounds reactions under acid catalysis

Carbonyl compounds reactions under base catalysis

Carbonyl compounds synthesis, palladium catalysis

Catalysis carbonylation

Catalysis compounds

Phase transfer catalysis synthesis of carbonyl compounds

© 2024 chempedia.info