Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds Mannich reaction

The versatile nature of cinchona alkaloid ammonium salts for phase-transfer catalysis can be illustrated by recent reports on conjugate additions [118] and a nitro-Mannich reachon [119]. Dimeric catalysts derived from quinine and quini-dine were applied in the conjugate addition of cyclic (l-ketoesters to a, 3-unsaturated carbonyl compounds. The reaction proceeded in the presence of a tertiary amine as base and afforded the products in moderate to high yield and enantioselectivity (Scheme 6.56). [Pg.151]

Pyrazolones show a great variety of reactions with carbonyl compounds (B-76MI40402). For instance, antipyrine is 4-hydroxymethylated by formaldehyde and it also undergoes the Mannich reaction. Tautomerizable 2-pyrazolin-5-ones react with aldehydes to yield compound (324) and with acetone to form 4-isopropylidene derivatives or dimers (Scheme 8 Section 4.02.1.4.10). [Pg.242]

Mannich bases (see 16-15) and p-halo carbonyl compounds can also be used as substrates these are converted to the C=C—Z compounds in situ by the base (16-15, 17-12). Substrates of this kind are especially useful in cases where the C=C—Z compound is unstable. The reaction of C=C—Z compounds with enamines (12-18) can also be considered a Michael reaction. Michael reactions are reversible. [Pg.1023]

The Mannich condensation has traditionally been carried out in the presence of water as a three-component condensation involving a carbonyl compound (or related carbon nucleophile), formaldehyde, and a primary or secondary amine. The initial step is a condensation between the latter two reactants to form a mono- or dialkyl(methylene)ammonium ion which subsequently serves as the electrophilic partner in the reaction. With unsymmetrical ketones aminomethylation generally occurs at both positions to give mixtures of isomeric 3-amino ketones. The ratio of the isomers depends strongly on the structure of the ketone, and the more highly branched (3-amino ketone usually predominates. [Pg.79]

Friedel-Crafts disconnection (38a) Is unambiguous because of the synunetry of (39). Further disconnection requires FGA. A carbonyl group next to the aromatic ring gives a 1,4-dicarbonyl compound (40) and allows disconnection of an acyl anion equivalent to give an enone (41). This can be made by Mannich reaction from (42). [Pg.295]

The Mannich reaction is the condensation of an enolizable carbonyl compound with an iminium ion.180 It is usually done using formaldehyde and introduces an a-dialkylaminomethyl substituent. [Pg.140]

The dialkylaminomethyl ketones formed in the Mannich reaction are useful synthetic intermediates.184 Thermal elimination of the amines or the derived quaternary salts provides a-methylene carbonyl compounds. [Pg.140]

Officially, the history of MCRs dates back to the year 1850, with the introduction of the Strecker reaction (S-3CR) describing the formation of a-aminocyanides from ammonia, carbonyl compounds, and hydrogen cyanide [4]. In 1882, the reaction progressed to the Hantzsch synthesis (H-4CR) of 1,4-dihydropyridines by the reaction of amines, aldehydes, and 1,3-dicarbonyl compounds [5], Some 25 years later, in 1917, Robinson achieved the total synthesis of the alkaloid tropinone by using a three-component strategy based on Mannich-type reactions (M-3CR) [6]. In fact, this was the earliest application of MCRs in natural product synthesis [7]. [Pg.543]

Bifunctional thiourea-catalysed enantioselective Michael reaction has been achieved. The thiourea moiety and an amino group of the catalyst activated a nitroolefin and a 1,3-dicarbonyl compound, respectively afford the Michael adduct with high enantioselectivity.177,178 Thioureas work as one of the most effective and general enantioselective nitro-Mannich reaction and carbonyl cyanation catalyst.179,180... [Pg.172]

Titanium enolates of various carbonyl compounds play an increasingly important role in Mannich-type reactions with different electrophiles. Recently, Liotta and co-workers reported a novel diastereoselective addition of chloro-titanium enolate 80 of iV-acylthiazolidinethione to various types of O-methyl oximes to afford the desired anti-azetines, precursors of a,/3-disubstituted /3-amino carbonyl derivatives 82 (Scheme 32).109... [Pg.420]

Zirconium enolates of various carbonyl compounds have also been investigated for Mannich-type reactions with different electrophiles. According to Shibasaki s method,148 the coupling reaction between a 3-acetoxy-4-alkyl-/3-lactam and the in r(/ -generated zirconium enolate 96 of a cyclohexanone derivative was realized as a key step during the total synthesis of an anitibiotic (Scheme 42).117,149... [Pg.423]

Besides the allylation reactions, imines can also undergo enol silyl ether addition as with carbonyl compounds. Carbon-carbon bond formation involving the addition of resonance-stabilized nucleophiles such as enols and enolates or enol ethers to iminium salt or imine can be referred to as a Mannich reaction, and this is one of the most important classes of reactions in organic synthesis.104... [Pg.183]

This chapter has introduced the aldol and related allylation reactions of carbonyl compounds, the allylation of imine compounds, and Mannich-type reactions. Double asymmetric synthesis creates two chiral centers in one step and is regarded as one of the most efficient synthetic strategies in organic synthesis. The aldol and related reactions discussed in this chapter are very important reactions in organic synthesis because the reaction products constitute the backbone of many important antibiotics, anticancer drugs, and other bioactive molecules. Indeed, study of the aldol reaction is still actively pursued in order to improve reaction conditions, enhance stereoselectivity, and widen the scope of applicability of this type of reaction. [Pg.188]

Mannich and related readions provide one of the most fundamental and useful methods for the synthesis of p-amino carbonyl compounds, which constitute various pharmaceuticals, natural products, and versatile synthetic intermediates.1271 Conventional protocols for three-component Mannich-type readions of aldehydes, amines, and ketones in organic solvents indude some severe side reactions and have some substrate limitations, espedally for enolizable aliphatic aldehydes. The dired synthesis of P-amino ketones from aldehydes, amines, and silyl enolates under mild conditions is desirable from a synthetic point of view. Our working hypothesis was that aldehydes could read with amines in a hydro-phobic reaction fidd created in water in the presence of a catalytic amount of a metal triflate and a surfactant to produce imines, which could then read with hydrophobic silyl enolates. [Pg.10]

T. Akiyama, J. Takaya, H. Kagoshima, One-Pot Mannich-Type Reaction in Water HBF4 Catalyzed Condensation of Aldehydes, Amines, and Silyl Enolates for the Synthesis of (5-Amino Carbonyl Compounds Synlett. 1999,1426-1428. [Pg.12]

The Mannich reaction is best discussed via an example. A mixture of dimethylamine, formaldehyde and acetone under mild acidic conditions gives N,N-dimethyl-4-aminobutan-2-one. This is a two-stage process, beginning with the formation of an iminium cation from the amine and the more reactive of the two carbonyl compounds, in this case the aldehyde. This iminium cation then acts as the electrophile for addition of the nucleophile acetone. Now it would be nice if we could use the enolate anion as the nucleophile, as in the other reactions we have looked at, but under the mild acidic conditions we cannot have an anion, and the nucleophile must be portrayed as the enol tautomer of acetone. The addition is then unspectacular, and, after loss of a proton from the carbonyl, we are left with the product. [Pg.369]

Miscellaneous PTC Reactions The field of PTC is constantly expanding toward the discovery of new enantioselective transformations. Indeed, more recent applications have demonstrated the capacity of chiral quaternary ammonium salts to catalyze a number of transformations, including the Neber rearrangement (Scheme 11.19a), ° the trifluoromethylation of carbonyl compounds (Scheme 11.19b), ° the Mannich reaction (Scheme 11.19c), and the nucleophilic aromatic substitution (SnAt)... [Pg.339]

P-amino carbonyl compound, and the reaction is now called the Mannich reaction [206, 207],... [Pg.51]

Although imines are less electrophilic than carbonyl compounds, they are also more readily activated by acids or hydrogen bonding. For this reason, Mannich reactions are often faster than the corresponding aldol reactions. It is not even necessary to use preformed imines. In a typical three-component Mannich reaction, the acceptor imine is generated from an aromatic or otherwise protected primary amine. [Pg.51]

Enamine nucleophiles react readily with soft conjugated electrophiles, such as a, 3-unsaturated carbonyl, nitro, and sulfonyl compounds [20-22], Both aldehydes and ketones can be used as donors (Schemes 27 and 28). These Michael-type reactions are highly useful for the construction of carbon skeletons and often the yields are very high. The problem, however, is the enantioselectivity of the process. Unlike the aldol and Mannich reactions, where even simple proline catalyst can effectively direct the addition to the C = O or C = N bond by its carboxylic acid moiety, in conjugate additions the charge develops further away from the catalyst (Scheme 26) ... [Pg.54]

Mannich reactions give rise to (i-amino carbonyl compounds which are amenable to further synthetic manipulations. Numerous stereoselective variants have been achieved by means of different types of catalysts including both metal complexes and organic molecules. In 2004, the groups of Akiyama and Terada independently selected this transformation as a model reaction for the introduction of a novel chiral motif to asymmetric catalysis [14, 15]. [Pg.399]

Three years after the discovery of the asymmetric BINOL phosphate-catalyzed Mannich reactions of silyl ketene acetals or acetyl acetone, the Gong group extended these transformations to the use of simple ketones as nucleophiles (Scheme 25) [44], Aldehydes 40 reacted with aniline (66) and ketones 67 or 68 in the presence of chiral phosphoric acids (R)-3c, (/ )-14b, or (/ )-14c (0.5-5 mol%, R = Ph, 4-Cl-CgH ) to give P-amino carbonyl compounds 69 or 70 in good yields (42 to >99%), flnfi-diastereoselectivities (3 1-49 1), and enantioselectivities (72-98% ee). [Pg.416]

This protocol complements Akiyama s method which provides P-amino carbonyl compounds as i yn-diastereomers [14], It tolerated aromatic, heteroaromatic, and aliphatic aldehydes. Cyclic ketones, acetone, as well as acetophenone derivatives could be employed. The use of aromatic ketones as Mannich donors was up to that time unprecedented in asymmetric organocatalysis. Rueping et al. independently expanded the scope of the asymmetric Brpnsted acid-catalyzed Mannich reaction of acetophenone [45]. [Pg.417]

A Mannich reaction is the reaction of formaldehyde with a primary or secondary amine and a compound with an active hydrogen atom. The product, an amine with a y-carbonyl, is called a Mannich base, useful in a number of synthesis reactions. An example is in Figure 15-23, and the mechanism is in Figure 15-24. [Pg.275]

These a,/l-unsaturated ketones and aldehydes are used as reactants in Michael additions (Section 1.10) and Robinson annulations (Section 2.1.4), as well as in a number of other reactions that we will encounter later. Entries 8 and 9 in Scheme 2.11 illustrate Michael reactions carried out by in situ generation of a,/ -unsaturated carbonyl compounds from Mannich bases. [Pg.98]

In the Mannich reaction, a carbonyl component usually formaldehyde, a secondary amine and a CH-acidic compound react together to form 3-aminoketones. The classical method for the formation of (3-aminoketones suffers from many disadvantages such as drastic reaction conditions, formation of undesired side products, little or no stereo-or regioselectivity and low yields. In 2000, Gadhwal and co-workers developed the first microwave-assisted Mannich protocol24 (Scheme 5.10). [Pg.111]

Keywords Mannich reaction, p-Amino carbonyl compounds, Imine, Enolate... [Pg.143]

It was also reported that diastereo- and enantioselective Mannich reactions of activated carbonyl compounds with a-imino esters were catalyzed by a chiral Lewis acid derived from Cu(OTf)2 and a bisoxazoline (BOX) ligand [31] [(Eq. (6)]. Catalytic enantioselective addition of nitro compounds to imines [32], and aza-Henry reactions of nitronates with imines [33] also proceeded under similar reaction conditions. [Pg.146]

Conversion of a Mannich base hydrochloride into an a,/ -unsaturated carbonyl compound, is illustrated by the formation of phenyl vinyl ketone, which is obtained directly by steam distillation (Expt 6.147). Alternatively the Mannich base may be treated with methyl iodide to form the quaternary salt, which then gives the a,/ -unsaturated carbonyl compound by a base-catalysed elimination reaction. [Pg.801]


See other pages where Carbonyl compounds Mannich reaction is mentioned: [Pg.32]    [Pg.142]    [Pg.349]    [Pg.99]    [Pg.114]    [Pg.244]    [Pg.202]    [Pg.395]    [Pg.1081]    [Pg.69]    [Pg.70]    [Pg.101]    [Pg.221]    [Pg.176]    [Pg.181]   
See also in sourсe #XX -- [ Pg.1010 ]

See also in sourсe #XX -- [ Pg.1010 ]

See also in sourсe #XX -- [ Pg.1010 ]




SEARCH



Carbonyl compounds, condensation reactions Mannich reaction

Carbonyl compounds, reactions

© 2024 chempedia.info