Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds asymmetric reactions

In recent years, the variety of useful diazo substrates for asymmetric intramolecular cyclopropanation processes has really expanded. As another example, Charette and Wurz have reported the first example of an intramolecular cyclopropanation involving a-nitro-a-diazo carbonyl compounds.This reaction, catalysed by Rh2[(S)-DOSP]4, led to the formation of nine-membered nitrocyclopropyl lactones in good yields and enantioselectivities with extremely high diastereoselectivities (Scheme 6.17). This novel methodology constituted an efficient entry into chiral functionalised macrocyclic-fused cyclopropane oc-amino acids. [Pg.221]

Meyers and Ford (76JOCI735), and Hirai et al. (72CPB206) have used 2-(alkylthio)-2-oxazolines or thiazolines to prepare the corresponding thi-iranes upon treatment with bases and subsequently with carbonyl compounds. The reactions of 2-pyridyl sulfides are expected to proceed similarly as shown in Scheme 22, since the oxazoline ring is a good leaving group in the intramolecular substitution reaction. When optically active oxazolines are used, asymmetric induction takes place to afford the optically active thiiranes in 19-32% enantiomeric excess (ee). The process is shown in Scheme 23. [Pg.47]

Bolm, C., Luong, T. K. K., Beckmann, O. Oxidation of carbonyl compounds asymmetric Baeyer-Villiger oxidation. Asymmetric Oxidation Reactions). 2001,147-151... [Pg.541]

Since conjugate (Michael) addition and Diels-Alder reactions use a,p-unsat united carbonyl compounds, asymmetric versions of these reactions could use the auxiliaries that we have seen in aldol reactions in the form of 118 and 119. Diels-Alder reactions work very well with these unsaturated amides and also with amides 121 derived from Oppolzer s chiral sultam14 120, prepared simply from camphorsulfonyl chloride. [Pg.613]

During the last two decades, several methods have been developed for an asymmetric catalytic addition of phosphorus nucleophiles to carbonyl compounds. " " These reactions are mostly based on Lewis acid catalysis by metal complexes bearing chiral ligands. By using complexes of La," " Al," and Ti, ° high cc-values and a broad... [Pg.1448]

Scheme 15. Vinylcupration of fluoro-carbonyl compounds Asymmetric MBH Reaction... Scheme 15. Vinylcupration of fluoro-carbonyl compounds Asymmetric MBH Reaction...
Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

Of course, the most practical and synthetically elegant approach to the asymmetric Darzens reaction would be to use a sub-stoichiometric amount of a chiral catalyst. The most notable approach has been the use of chiral phase-transfer catalysts. By rendering the intermediate etiolate 86 (Scheme 1.24) soluble in the reaction solvent, the phase-transfer catalyst can effectively provide the enolate with a chiral environment in which to react with carbonyl compounds. [Pg.22]

Azirines (three-membered cyclic imines) are related to aziridines by a single redox step, and these reagents can therefore function as precursors to aziridines by way of addition reactions. The addition of carbon nucleophiles has been known for some time [52], but has recently undergone a renaissance, attracting the interest of several research groups. The cyclization of 2-(0-tosyl)oximino carbonyl compounds - the Neber reaction [53] - is the oldest known azirine synthesis, and asymmetric variants have been reported. Zwanenburg et ah, for example, prepared nonracemic chiral azirines from oximes of 3-ketoesters, using cinchona alkaloids as catalysts (Scheme 4.37) [54]. [Pg.134]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

In most cases of diastereoselective nucleophilic addition reactions where achiral organometallic reagents are added to chiral carbonyl compounds, the chirulity inducing asymmetric center is in close vicinity to the newly created center and cannot be removed without the loss of chirality of either the inducing center or the newly formed center. This type of reaction is very useful in propagating chirality in a molecule from one center to an adjacent one, or in immolative processes. [Pg.99]

The use of chiral bis(oxazoline) copper catalysts has also been often reported as an efficient and economic way to perform asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines with conjugated dienes [81], with the main focus on the application of this methodology towards the preparation of biologically valuable synthons [82]. Only some representative examples are listed below. For example, the copper complex 54 (Scheme 26) has been successfully involved in the catalytic hetero Diels-Alder reaction of a substituted cyclohexadiene with ethyl glyoxylate [83], a key step in the total synthesis of (i )-dihydroactinidiolide (Scheme 30). [Pg.118]

Reaction of optically active a-sulphinyl acetate 298a with prochiral carbonyl compounds proceeds with a high asymmetric induction - , the degree of which depends on the nature of substituents at the carbonyl group (equation 252 Table 22) . The jS-hydroxy sulphoxides 422 formed may be transformed to optically active p-hydroxycarboxylic esters 423 (equation 253) and optically active long-chain lactones 424 99 (equation 254). Corey and coworkers have used this method to introduce a chiral centre at C-3 in their synthesis of maytansin °°, and Papageorgiou and Benezra for the synthesis of chiral a-hydroxyalkyl acrylates 425 ° (equation 255). [Pg.329]

The carbonyl group in a ketone or aldehyde is an extremely versatile vehicle for the introduction of functionality. Reaction can occur at the carbonyl carbon atom using the carbonyl group as an electrophile or through enolate formation upon removal of an acidic proton at the adjacent carbon atom. Although the carbonyl group is an integral part of the nucleophile, a carbonyl compound can also be considered as an enophile when involved in an asymmetric carbonyl-ene reaction or dienophile in an asymmetric hetero Diels-Alder reaction. These two types of reaction are discussed in the next three chapters. [Pg.71]

The prime functional group for constructing C-C bonds may be the carbonyl group, functioning as either an electrophile (Eq. 1) or via its enolate derivative as a nucleophile (Eqs. 2 and 3). The objective of this chapter is to survey the issue of asymmetric inductions involving the reaction between enolates derived from carbonyl compounds and alkyl halide electrophiles. The addition of a nucleophile toward a carbonyl group, especially in the catalytic manner, is presented as well. Asymmetric aldol reactions and the related allylation reactions (Eq. 3) are the topics of Chapter 3. Reduction of carbonyl groups is discussed in Chapter 4. [Pg.71]

The reaction shown in Scheme 2-7 is an example of 1,3-asymmetric induction. The oxidative hydroxylation of a five-membered lactone led to an a-hydroxyl product 14.14 The a-hydroxylation of carbonyl compounds is further discussed in Chapter 4. [Pg.76]


See other pages where Carbonyl compounds asymmetric reactions is mentioned: [Pg.320]    [Pg.306]    [Pg.584]    [Pg.812]    [Pg.67]    [Pg.202]    [Pg.688]    [Pg.400]    [Pg.338]    [Pg.443]    [Pg.106]    [Pg.213]    [Pg.17]    [Pg.66]    [Pg.654]    [Pg.87]    [Pg.98]    [Pg.121]    [Pg.182]    [Pg.320]    [Pg.329]    [Pg.276]    [Pg.75]    [Pg.105]    [Pg.270]    [Pg.293]    [Pg.324]    [Pg.157]    [Pg.92]    [Pg.113]    [Pg.124]    [Pg.4]    [Pg.854]   
See also in sourсe #XX -- [ Pg.103 , Pg.104 , Pg.105 , Pg.106 , Pg.107 , Pg.108 , Pg.109 , Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 ]




SEARCH



Asymmetric Carbonylation Reactions

Carbonyl compounds asymmetric

Carbonyl compounds catalytic asymmetric reactions

Carbonyl compounds, reactions

Carbonylation asymmetric

© 2024 chempedia.info