Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl complexes iron-tungsten

The mononuclear carbonyls of nickel and iron that are liquid at the ambient temperatures are extremely flammable. Their vapors present flashback fire hazard. They also form explosive mixtures with air. Also, most mononuclear carbonyls that are solids at ambient conditions are pyrophoric. These include the carbonyls of vanadium and tungsten. All carbonyl complexes are air sensitive. Some of them ignite on prolonged exposure to air or may catch fire when opened to air after long storage. The dimeric and trimeric derivatives, however, are less pyrophoric than the mononuclear complexes. All carbonyl metal complexes are susceptible to explode on heating. They react violently with strong oxidants. [Pg.623]

Anionic carbonyl complexes of iron, ruthenium, chromium, molybdenum, tungsten, etc., also react with 3,4-dichlorocyclobutene or its derivatives. In order to obtain anionic derivatives, metal carbonyls are reduced by means of sodium amalgam [equations (8.29H8.31)]. [Pg.490]

A problem is that the Pauson-Khand reaction uses two equivalents of cobalt. More efficient versions, many of them catalytic, using other metals have been developed. These include carbonyl complexes of titanium, molybdenum, tungsten (Scheme 7.15), rhodium and ruthenium (Scheme 7.16). Rhodium, iridium and iron (Scheme 7.17) have also been used with two alkynes to give cyclopentadienones, often as complexes 7.59. A version of the Pauson-Khand reaction employing a nickel catalyst and an isonitrile in place of CO has been developed. The product is an imine, which can be hydrolysed to a cyclopentenone. [Pg.246]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]

Transition metal complexes which react with diazoalkanes to yield carbene complexes can be catalysts for diazodecomposition (see Section 4.1). In addition to the requirements mentioned above (free coordination site, electrophi-licity), transition metal complexes can catalyze the decomposition of diazoalkanes if the corresponding carbene complexes are capable of transferring the carbene fragment to a substrate with simultaneous regeneration of the original complex. Metal carbonyls of chromium, iron, cobalt, nickel, molybdenum, and tungsten all catalyze the decomposition of diazomethane [493]. Other related catalysts are (CO)5W=C(OMe)Ph [509], [Cp(CO)2Fe(THF)][BF4] [510,511], and (CO)5Cr(COD) [52,512]. These compounds are sufficiently electrophilic to catalyze the decomposition of weakly nucleophilic, acceptor-substituted diazoalkanes. [Pg.91]

Allyl complexes (pseudo-rotations, dynamic NMR studies, 1, 416 with tungsten carbonyls and isocyanides, 5, 688-689 rc-Allyl complexes with Cr, 5, 305 with Cr(II), 5, 300 with Cr(III), 5, 300 and cyclodextrins, 12, 789 in enyne carbometallation, 10, 328 with rhodium, 7, 220-221 (j-Allyl complexes, with iron, 6, 98 5-Allyldiisopinocampheylboranes, in asymmetric allylboration, 9, 198... [Pg.51]

Bis[iV,iV -di(2-pyridyl)-imidazol-2-ylidene]aurate(I) tetrafluoroborates, preparation, 2, 292-293 Bis[iV,iV -di(2-pyridyl-methyl)-imidazol-2-ylidene]aurate(I) tetrafluoroborates, preparation, 2, 292-293 Bis(diselenolate) complexes, dinuclear iron compounds, 6, 242 Bis(dithiolene) compounds, in tungsten carbonyl and isocyanide complexes, 5, 644 Bis(enolato) complexes, with bis-Cp Ti(IV), 4, 589 Bis(enones), in reductive cyclizations, 10, 502 Bis(ethanethiolato) complexes, with bis-Cp Ti(IV), 4, 601 Bis(ethene)iridium complexes, preparation, 7, 328-329 -Bis(fluorenyl)zirconocene dichlorides, preparation,... [Pg.65]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]

In 1980 we published a survey (1) of our major results in this area as of late 1979. These results include extensive work on binuclear CF N PF complexes of cobalt (2,3,4,5) and nickel (6). This paper summarizes our more recent results in this area with particular emphasis on binuclear complexes of chromium, molybdenum, and tungsten as well as some new results on iron carbonyl derivatives. [Pg.489]

The thermal reactions of [Et2NCH2CN] with chromium, molybdenum, tungsten, manganese, and iron carbonyls gave complexes of the type... [Pg.147]


See other pages where Carbonyl complexes iron-tungsten is mentioned: [Pg.126]    [Pg.216]    [Pg.118]    [Pg.1055]    [Pg.151]    [Pg.2814]    [Pg.461]    [Pg.292]    [Pg.309]    [Pg.1701]    [Pg.622]    [Pg.171]    [Pg.362]    [Pg.220]    [Pg.156]    [Pg.123]    [Pg.61]    [Pg.26]    [Pg.616]    [Pg.965]    [Pg.156]    [Pg.413]    [Pg.156]    [Pg.73]    [Pg.44]    [Pg.96]    [Pg.147]    [Pg.285]    [Pg.93]    [Pg.125]   
See also in sourсe #XX -- [ Pg.26 , Pg.336 ]




SEARCH



Carbonyl complexes, chromium iron-tungsten

Carbonylation Iron carbonyl

Iron carbonyl complexes

Iron complexes carbonylation

Tungsten carbonyl complex

Tungsten carbonyls

Tungsten complexes, carbonylation

© 2024 chempedia.info