Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl complexes, chromium iron-tungsten

Transition metal complexes which react with diazoalkanes to yield carbene complexes can be catalysts for diazodecomposition (see Section 4.1). In addition to the requirements mentioned above (free coordination site, electrophi-licity), transition metal complexes can catalyze the decomposition of diazoalkanes if the corresponding carbene complexes are capable of transferring the carbene fragment to a substrate with simultaneous regeneration of the original complex. Metal carbonyls of chromium, iron, cobalt, nickel, molybdenum, and tungsten all catalyze the decomposition of diazomethane [493]. Other related catalysts are (CO)5W=C(OMe)Ph [509], [Cp(CO)2Fe(THF)][BF4] [510,511], and (CO)5Cr(COD) [52,512]. These compounds are sufficiently electrophilic to catalyze the decomposition of weakly nucleophilic, acceptor-substituted diazoalkanes. [Pg.91]

Anionic carbonyl complexes of iron, ruthenium, chromium, molybdenum, tungsten, etc., also react with 3,4-dichlorocyclobutene or its derivatives. In order to obtain anionic derivatives, metal carbonyls are reduced by means of sodium amalgam [equations (8.29H8.31)]. [Pg.490]

The thermal reactions of [Et2NCH2CN] with chromium, molybdenum, tungsten, manganese, and iron carbonyls gave complexes of the type... [Pg.147]

Vanhoye and coworkers [402] synthesized aldehydes by using the electrogenerated radical anion of iron pentacarbonyl to reduce iodoethane and benzyl bromide in the presence of carbon monoxide. Esters can be prepared catalytically from alkyl halides and alcohols in the presence of iron pentacarbonyl [403]. Yoshida and coworkers reduced mixtures of organic halides and iron pentacarbonyl and then introduced an electrophile to obtain carbonyl compounds [404] and converted alkyl halides into aldehydes by using iron pentacarbonyl as a catalyst [405,406]. Finally, a review by Torii [407] provides references to additional papers that deal with catalytic processes involving complexes of nickel, cobalt, iron, palladium, rhodium, platinum, chromium, molybdenum, tungsten, manganese, rhenium, tin, lead, zinc, mercury, and titanium. [Pg.368]

C, Carbide iron complex, 26 246 ruthenium cluster complexes, 26 281-284 CHF,02, Acetic acid, trifluoro-tungsten complex, 26 222 CHFjOjS, Methanesulfonic acid, trifluoro-iridium, manganese, and rhenium complexes, 26 114, 115, 120 platinum complex, 26 126 CH2O2, Formic acid rhenium complex, 26 112 CH, Methyl iridium complex, 26 118 manganese complex, 26 156 rhenium complexes, 26 107 CHjO, Methanol platinum complexes, 26 135 tungsten complex, 26 45 CNajOuRusCn, Ruthenate(2- )ns-carbido-tetradecacarbonyl-disodium, 26 284 CO, Carbonyls chromium, 26 32, 34, 35 chromium, molybdenum, and tungsten, 26 343... [Pg.413]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]

In 1980 we published a survey (1) of our major results in this area as of late 1979. These results include extensive work on binuclear CF N PF complexes of cobalt (2,3,4,5) and nickel (6). This paper summarizes our more recent results in this area with particular emphasis on binuclear complexes of chromium, molybdenum, and tungsten as well as some new results on iron carbonyl derivatives. [Pg.489]


See other pages where Carbonyl complexes, chromium iron-tungsten is mentioned: [Pg.622]    [Pg.126]    [Pg.413]    [Pg.309]    [Pg.60]    [Pg.658]    [Pg.220]    [Pg.587]    [Pg.118]    [Pg.285]    [Pg.647]    [Pg.66]    [Pg.292]    [Pg.52]    [Pg.289]   
See also in sourсe #XX -- [ Pg.26 , Pg.336 ]

See also in sourсe #XX -- [ Pg.26 , Pg.336 ]




SEARCH



Carbonyl complexes iron-tungsten

Carbonylation Iron carbonyl

Carbonyls, chromium iron-tungsten

Carbonyls, chromium tungsten

Chromium carbonyl complex

Chromium carbonylation

Chromium carbonyls

Iron carbonyl complexes

Iron complexes carbonylation

Tungsten carbonyl complex

Tungsten carbonyls

Tungsten complexes, carbonylation

© 2024 chempedia.info