Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl alkylation reaction

One of the oldest and best known carbonyl alkylation reactions is the malonic ester synthesis, a method for preparing a carboxylic add from an alkyl halide while lengthening the carbon chain by two atoms. [Pg.856]

G.ii. Organocerium Reagents. Reduction in Grignard reactions of hindered ketones can severely limit a carbonyl alkylation reaction. This limitation can be circumvented, however, by the converting the Grignard... [Pg.605]

Yamamoto, Maruoka and coworkers developed bulky aluminum Lewis acids such as methylaluminum bis(4-substituted-2,6-di-tert-butylphenoxide) abbreviated as MAD, MAT, and MABR, methylaluminum bis(2,6-diphenylphenoxide) (MAPH) and ATPH for stereoselective carbonyl alkylation reactions (Figure 6.2). [Pg.262]

The Sn2 alkylation reaction between an enolate ion and an alkyl halide is a powerful method for making C-C bonds, thereby building up larger molecules from smaller precursors. We ll study the alkylation of many kinds of carbonyl compounds in Chapter 22. [Pg.692]

Interactive to use a web-based palette to predict products in halogenation and alkylation reactions of carbonyl enolates. [Pg.855]

Ketones, esters, and nitriles can all be alkylated using LDA or related dialkyl-amide bases in THE. Aldehydes, however, rarely give high yields of pure products because their enolate ions undergo carbonyl condensation reactions instead of alkylation. (We ll study this condensation reaction in the next chapter.) Some specific examples of alkylation reactions are shown. [Pg.861]

There is no simple answer to this question, but the exact experimental conditions usually have much to do with the result. Alpha-substitution reactions require a full equivalent of strong base and are normally carried out so that the carbonyl compound is rapidly and completely converted into its enolate ion at a low temperature. An electrophile is then added rapidly to ensure that the reactive enolate ion is quenched quickly. In a ketone alkylation reaction, for instance, we might use 1 equivalent of lithium diisopropylamide (LDA) in lelrahydrofuran solution at -78 °C. Rapid and complete generation of the ketone enolate ion would occur, and no unreacled ketone would be left so that no condensation reaction could take place. We would then immediately add an alkyl halide to complete the alkylation reaction. [Pg.881]

Besides acylation and alkylation reactions, typical carbonyl reactions, such as reduction and substitution, are known. Thus, the oxo group in position 3 of 8 is attacked by sodium cyanide, resulting in the cyanohydrin in 55% yield. Subsequent dehydration with p-toluene-sulfonic acid and acetylation in position 5 gives 1-benzothiepin 12.90... [Pg.94]

Unsubstituted or alkyl-substituted 2-alkenyllithium, -sodium and -potassium derivatives are of little value in stereoselective carbonyl addition reactions. In general, these reagents exhibit high... [Pg.229]

Few examples concerning the addition of 4,5-dihydroisoxazoles, via their ercr/oazaeno-lates, to carbonyl compounds have been published. As described for entfo-alkylation reactions... [Pg.611]

The fundamental aspects of the structure and stability of carbanions were discussed in Chapter 6 of Part A. In the present chapter we relate the properties and reactivity of carbanions stabilized by carbonyl and other EWG substituents to their application as nucleophiles in synthesis. As discussed in Section 6.3 of Part A, there is a fundamental relationship between the stabilizing functional group and the acidity of the C-H groups, as illustrated by the pK data summarized in Table 6.7 in Part A. These pK data provide a basis for assessing the stability and reactivity of carbanions. The acidity of the reactant determines which bases can be used for generation of the anion. Another crucial factor is the distinction between kinetic or thermodynamic control of enolate formation by deprotonation (Part A, Section 6.3), which determines the enolate composition. Fundamental mechanisms of Sw2 alkylation reactions of carbanions are discussed in Section 6.5 of Part A. A review of this material may prove helpful. [Pg.2]

Some enamine alkylation reactions are shown in Scheme 1.10. Entries 1 and 2 are typical alkylations using reactive halides. In Entries 3 and 4, the halides are secondary with a-carbonyl substituents. Entry 5 involves an unactivated primary bromide and the yield is modest. The reaction in Entry 6 involves introduction of two groups. This... [Pg.47]

Several modifications have been made to organoaluminum-based catalysts. Methylaluminum bis(2,6-di-tert-butyl-4-alkylphenoxide) (MAD) shows high diastereofacial selectivity in carbonyl alkylation (Scheme 72).31 11 Aluminum tris(2,6-diphenylphenoxide) (ATPH) has been developed as a catalyst for conjugate addition reactions. Since a carbonyl group is stabilized by steric effect of ATPH, the 1,4-adduct is obtained selectively.312... [Pg.430]

The preparation of quinoline and tetrahydroquinoline derivatives from metal carbonyl-catalyzed reactions of Schiff bases with alkyl vinyl ethers in... [Pg.383]

Another important line of investigation concerned the carbonyl insertion reaction, which was best defined in manganese chemistry (75, 16) and extended to acylcobalt tetracarbonyls by Heck and Breslow. The insertion may be through three-membered ring formation or by nucleophilic attack of an alkyl group on a coordinated CO group. [Pg.4]

This reaction occurs thermally in toluene at 30°C with an equilibrium constant (K) equal to 1.5 (13). Both bis(phosphine) and (carbonyl)phosphine Soret bands are present in the active catalyst solutions (see Decarbonylation Procedure), together with the unassigned, and likely critical, band at 420 nm. This could be due to some species giving rise to, or resulting from, a RuII + RCO reaction this is equivalent, of course, to a (Ru H-COR) acyl or a RuIII(C0)R (carbonyl)alkyl species, and the final elimination reaction after loss of CO could be written as ... [Pg.248]

The ruthenium-, rhodium-, and palladium-catalyzed C-C bond formations involving C-H activation have been reviewed from the reaction types and mechanistic point of view.135-138 The activation of aromatic carbonyl compounds by transition metal catalyst undergoes ortho-alkylation through the carbometallation of unsaturated partner. This method offers an elegant way to activate C-H bond as a nucleophilic partner. The rhodium catalyst 112 has been used for the alkylation of benzophenone by vinyltrimethylsilane, affording the monoalkylated product 110 in 88% yield (Scheme 34). The formation of the dialkylated product is also observed in some cases. The ruthenium catalyst 113 has shown efficiency for such alkylation reactions, and n-methylacetophenone is transformed to the ortho-disubstituted acetophenone 111 in 97% yield without over-alkylation at the methyl substituent. [Pg.315]

Thus, the postulated chelated enolates and their alkylation reaction make the intra-annular chirality transformation possible. This method for enolate formation is the focal point of this chapter, as this is by far the most effective approach to alkylation or other asymmetric synthesis involving carbonyl are compounds. [Pg.79]

Carbonyl alkylation and condensation reactions are always of great value in synthesis, and the formation of o-ANIS ALDEHYDE via 4,4-dimethyl-2-oxazoline, 2,2-DIMETHYL-3-PHENYLPROPION-ALDEHYDE via alkylation of the magnesio-enamine salt and threo-4-HYDROXY-3-PHENYL-2-HEPTANONE via a directed aldol... [Pg.140]

Interest in the uses of HMPT has also been maintained, but a warning has been issued (by the E. I. du Pont de Nemours Company and the U.S. National Institute for Occupational Safety and Health) about its potential acute toxicity. HMPT has been used in the synthesis of 2,4-bis(dimethylamino)qui nolines,9 8 as a solvent for reactions between carbonyl compounds and sulphur," for the conversion of iV-benzylcarbox-amides into 3-phenylpropionitriles,100 in reactions between metals or organometallic compounds with a variety of organic substrates,101 and as a solvent for alkylation reactions of /J-keto-esters and related compounds in which the alkylation reaction is accompanied by de(alkoxycarbonylation) (Scheme 7).102... [Pg.124]

As indicated in Chapter 8, the production of alkanes, as by-products, frequently accompanies the two-phase metal carbonyl promoted carbonylation of haloalkanes. In the case of the cobalt carbonyl mediated reactions, it has been assumed that both the reductive dehalogenation reactions and the carbonylation reactions proceed via a common initial nucleophilic substitution reaction and that a base-catalysed anionic (or radical) cleavage of the metal-alkyl bond is in competition with the carbonylation step [l]. Although such a mechanism is not entirely satisfactory, there is no evidence for any other intermediate metal carbonyl species. [Pg.498]

While a large number of studies have been reported for conjugate addition and Sn2 alkylation reactions, the mechanisms of many important organocopper-promoted reactions have not been discussed. These include substitution on sp carbons, acylation with acyl halides [168], additions to carbonyl compounds, oxidative couplings [169], nucleophilic opening of electrophilic cyclopropanes [170], and the Kocienski reaction [171]. The chemistry of organocopper(II) species has rarely been studied experimentally [172-174], nor theoretically, save for some trapping experiments on the reaction of alkyl radicals with Cu(I) species in aqueous solution [175]. [Pg.338]


See other pages where Carbonyl alkylation reaction is mentioned: [Pg.76]    [Pg.260]    [Pg.76]    [Pg.260]    [Pg.194]    [Pg.338]    [Pg.270]    [Pg.881]    [Pg.1282]    [Pg.1285]    [Pg.175]    [Pg.307]    [Pg.3]    [Pg.137]    [Pg.345]    [Pg.1]    [Pg.216]    [Pg.240]    [Pg.413]    [Pg.55]    [Pg.164]    [Pg.172]    [Pg.385]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Alkyl metals, a-selenocarbonyl compound homologation reactions with carbonyl compounds

Alkylation with Carbonyl Compounds The Prins Reaction

Alkylative carbonylation

Carbene complexes, alkyl pentacarbonylalkylation reaction with carbonyl compounds

Carbonyl addition/alkylation reaction

Carbonyl alkylation

Condensation reactions, carbonyl compounds alkylation, enolate ions

Friedel-Crafts alkylation reactions carbonyl compounds

Grignard reaction: alkylation with carbonyl compounds

Iron alkyls, carbonylation reactions with nucleophiles

Sulfoxides, alkyl aryl reactions with carbonyl compounds

© 2024 chempedia.info