Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbons forms, mechanical properties

Mechanical properties depend on the alloying elements. Addition of carbon to the cobalt base metal is the most effective. The carbon forms various carbide phases with the cobalt and the other alloying elements (see Carbides). The presence of carbide particles is controlled in part by such alloying elements such as chromium, nickel, titanium, manganese, tungsten, and molybdenum that are added during melting. The distribution of the carbide particles is controlled by heat treatment of the solidified alloy. [Pg.372]

As you can see from the tables in Chapter 1, few metals are used in their pure state -they nearly always have other elements added to them which turn them into alloys and give them better mechanical properties. The alloying elements will always dissolve in the basic metal to form solid solutions, although the solubility can vary between <0.01% and 100% depending on the combinations of elements we choose. As examples, the iron in a carbon steel can only dissolve 0.007% carbon at room temperature the copper in brass can dissolve more than 30% zinc and the copper-nickel system - the basis of the monels and the cupronickels - has complete solid solubility. [Pg.16]

Niobium is always found in nature associated with tantalum and it closely resembles tantalum in its chemical and mechanical properties. It is a soft ductile metal which, like tantalum, work hardens more slowly than most metals. It will in fact absorb over 90% cold work before annealing becomes necessary, and it is easily formed at room temperature. In addition, welds of high quality can be produced in the metal. In appearance the metal is somewhat similar to stainless steel it has a density slightly higher than stainless steel and a thermal conductivity similar to 1% carbon steel. [Pg.852]

It must always be remembered that diffusion coatings are produced by a form of heat treatment and that, with the exception of low-temperature zinc diffusion (sherardising), the treated ferrous materials are usually in the annealed condition. Whenever the mechanical properties of the parts must be restored to their original level, a subsequent heat treatment is necessary . This does not as a rule present any difficulty with chromised or boronised steels. In order to prevent undue distortion and internal stresses during treatment and subsequent hardening, it is recommended that high-carbon and alloy steels should be processed in the normalised condition. [Pg.410]

The morphology of the agglomerates has been problematic, although some forms of network-like structures have been assumed on the basis of percolation behavior of conductivity and some mechanical properties, e.g., the Payne effect. These network stmctures are assumed to be determining the electrical and mechanical properties of the carbon-black-filled vulcanizates. In tire industries also, it plays an important role for the macroscopic properties of soft nano-composites, e.g., tear. [Pg.549]

Lead and Alloys Chemical leads of 99.9 percent purity are used primarily in the chemical industry in environments that form thin, insoluble, and self-repairable protective films, e.g., salts such as sulfates, carbonates, or phosphates. More soluble films such as nitrates, acetates, or chlorides offer little protection. Alloys of antimony, tin, and arsenic offer limited improvement in mechanical properties, but the usefulness of lead is limited primarily because of its poor structural qualities. It has a low melting point and tensile stress as low as 1 MPa (145 Ibf/in ). [Pg.34]

Although polymers in-service are required to be resistant toward hydrolysis and solar degradation, for polymer deformulation purposes hydrolysis is an asset. Highly crystalline materials such as compounded polyamides are difficult to extract. For such materials hydrolysis or other forms of chemolysis render additives accessible for analysis. Polymers, which may profitably be depolymerised into their monomers by hydrolysis include PET, PBT, PC, PU, PES, POM, PA and others. Hydrolysis occurs when moisture causes chain scissions to occur within the molecule. In polyesters, chain scissions take place at the ester linkages (R-CO-O-R ), which causes a reduction in molecular weight as well as in mechanical properties. Polyesters show their susceptibility to hydrolysis with dramatic shifts in molecular weight distribution. Apart from access to the additives fraction, hydrolysis also facilitates molecular characterisation of the polymer. In this context, it is noticed that condensation polymers (polyesters, -amides, -ethers, -carbonates, -urethanes) have also been studied much... [Pg.152]

Another interesting type of novel carbons applicable for supercapacitors, consists of a carbon/carbon composite using nanotubes as a perfect backbone for carbonized polyacrylonitrile. Multiwalled carbon nanotubes (MWNTs), due to their entanglement form an interconnected network of open mesopores, which makes them optimal for assuring good mechanical properties of the electrodes while allowing an easy diffusion of ions. [Pg.31]

These representative aliphatic polyesters are often used in copolymerized form in various combinations, for example, poly(lactide-co-glycolide) (PLGA) [66-68] and poly(lactide-co-caprolactone) [69-73], to improve degradation rates, mechanical properties, processability, and solubility by reducing crystallinity. Other monomers such as 1,4-dioxepan-5-one (DXO) [74—76], 1,4-dioxane-2-one [77], and trimethylene carbonate (TMC) [28] (Fig. 2) have also been used as comonomers to improve the hydrophobicity of the aliphatic polyesters as well as their degradability and mechanical properties. [Pg.72]


See other pages where Carbons forms, mechanical properties is mentioned: [Pg.1755]    [Pg.668]    [Pg.20]    [Pg.20]    [Pg.74]    [Pg.320]    [Pg.468]    [Pg.391]    [Pg.82]    [Pg.72]    [Pg.7]    [Pg.40]    [Pg.237]    [Pg.158]    [Pg.95]    [Pg.152]    [Pg.1]    [Pg.45]    [Pg.47]    [Pg.1228]    [Pg.441]    [Pg.904]    [Pg.624]    [Pg.62]    [Pg.525]    [Pg.225]    [Pg.99]    [Pg.90]    [Pg.326]    [Pg.372]    [Pg.547]    [Pg.1058]    [Pg.44]    [Pg.142]    [Pg.6]    [Pg.220]    [Pg.121]    [Pg.1]    [Pg.23]    [Pg.534]    [Pg.21]    [Pg.105]   
See also in sourсe #XX -- [ Pg.473 ]

See also in sourсe #XX -- [ Pg.473 ]




SEARCH



Carbon forms

Carbon mechanism

Carbon properties

Carbonates properties

Mechanical forming

© 2024 chempedia.info