Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonium acids, tert

As a result of the inductive and hyperconjugative effects it is to be expected that tertiary carbonium ions will be more stable than secondary carbonium ions, which in turn will be more stable than primary ions. The stabilization of the corresponding transition states for ionization should be in the same order, since the transition state will somewhat resemble the ion. Thus the first order rate constant for the solvolysis of tert-buty bromide in alkaline 80% aqueous ethanol at 55° is about 4000 times that of isopropyl bromide, while for ethyl and methyl bromides the first order contribution to the hydrolysis rate is imperceptible against the contribution from the bimolecular hydrolysis.217 Formic acid is such a good ionizing solvent that even primary alkyl bromides hydrolyze at a rate nearly independent of water concentration. The relative rates at 100° are tertiary butyl, 108 isopropyl, 44.7 ethyl, 1.71 and methyl, 1.00.218>212 One a-phenyl substituent is about as effective in accelerating the ionization as two a-alkyl groups.212 Thus the reactions of benzyl compounds, like those of secondary alkyl compounds, are of borderline mechanism, while benzhydryl compounds react by the unimolecular ionization mechanism. [Pg.110]

Carbocations are a class of reactive intermediates that have been studied for 100 years, since the colored solution formed when triphenylmethanol was dissolved in sulfuric acid was characterized as containing the triphenylmethyl cation. In the early literature, cations such as Ph3C and the tert-butyl cation were referred to as carbonium ions. Following suggestions of Olah, such cations where the positive carbon has a coordination number of 3 are now termed carbenium ions with carbonium ions reserved for cases such as nonclassical ions where the coordination number is 5 or greater. Carbocation is the generic name for an ion with a positive charge on carbon. [Pg.4]

These energy values are calculated from thermochemical tables (11) and the ionization potentials of hydrocarbons obtained by Stevenson (15) using mass spectrometric methods. The union of an olefin and a proton from an acid catalyst leads to the formation of a positively charged radical, called a carbonium ion. The two shown above are sec-propyl and fer -butyl, respectively. [For addition to the other side of the double bond, A 298 = —151.5 and —146 kg.-cal. per mole, respectively. For comparison, reference is made to the older (4) values of Evans and Polanyi, which show differences of —7 and —21 kg.-cal. per mole between the resultant n- and s-propyl and iso-and tert-butyl ions, respectively, against —29.5 and —49 kg.-cal. per mole here. These energy differences control the carbonium ion isomerization reactions discussed below.]... [Pg.9]

The failure of difluoramine to appear among the final products is not particularly surprising. In the presence of nitric acid and/or nitrogen oxides, it might easily be oxidized and may well constitute the source of the silicon tetrafluoride. The formation of a carbonium ion from trityl-difluoramine would be favored by resonance stabilization. In the tert-butyl case, on the other hand, this driving force is not present and formation of the ion would be expected to occur less readily. In addition, both the tert-butyl carbonium ion and the difluorammonium ion from which it is derived would be more subject to a variety of side reactions than the corresponding trityl species. [Pg.167]

The classical method for making tert-butyl esters involves mineral acid-catalysed addition of the carboxylic acid to isobutene but it is a rather harsh procedure for use in any but the most insensitive of substrates [Scheme 6.33].80-82 Moreover, the method is hazardous because a sealed apparatus is needed to prevent evaporation of the volatile isobutene. A simpler procedure [Scheme 6.34] involves use of tert-butyl alcohol in the presence of a heterogeneous acid catalyst — concentrated sulfuric acid dispersed on powdered anhydrous magnesium sulfate. 3 No interna] pressure is developed during the reaction and the method is successful for various aromatic, aliphatic, olefinic, heteroaromatic, and protected amino acids. Also primary and secondary alcohols can be converted into the corresponding /erf-butyl ethers using essentially the same procedure (with the exception of alcohols particularly prone to carbonium ion formation (e.g. p-... [Pg.391]

In zeolites, this barrier is even higher. As discussed in Section II.B, the lower acid strength and the interaction between the zeolitic oxygen atoms and the hydrocarbon fragments lead to the formation of alkoxides rather than carbenium ions. Thus, extra energy is needed to transform these esters into carbonium ionlike transition states. Quantum-chemical calculations of hydride transfer between C2-C4 adsorbed alkenes and free alkanes on clusters representing zeolitic acid sites led to activation energies of approximately 200 kJ/mol for isobutane/tert-butoxide (29), 230-305 kJ/mol for propane/sec-propoxide, and 240 kJ/mol for isobutane/tert-butoxide (32), 130-150 kJ/mol for ethane/ethene (63), 95-105 kJ/mol for propane/propene, 88-109 kJ/mol for isobutane/isobutylene, and... [Pg.265]

Polymerization Catalysed by Acids and Bases. Carbonium ions and carbanions respectively are carriers of the chain transfer in cationic and anionic polymerizations respectively. Ionic polymerization mechanism was exploited for the synthesis of polymeric stabilizers in comparison with the free-radical polymerization only exceptionally. The cationic process was used for the synthesis of copolymers of 2,6-di-tert-butyl-4-vinylphenol with cyclopentadiene and/or for terpolymers with cyclopentadiene and isobutylene [109]. System SnCWEtsAlCla was used as an initiator. Poly(lO-vinylphenothiazin) was prepared by means of catalysis with titanium chlorides [110]. Polymers of 4-[a-(2-hydroxy-3,5-dimethylphenyl)ethyl]-vinylbenzene [111] and 3-allyl-2-hydroxyacetophenone [112] were also prepared under conditions of cationic polymerization. [Pg.95]

Acid-Catalyzed Elimination Reactions. The simplest kind of elimination reaction is catalyzed by acids and proceeds through a transitory carbonium ion (p. 44). Consider tert-butyl alcohol. In the presence of acid, an oxonium ion is formed (I) which can dissociate into water and a carbonium ion (II). As with all carbonium ions, there are then four courses of reaction open. (1) It can react with another water molecule or anion. (2) It can rearrange. (3) It can abstract a hydrogen atom with a pair of electrons from another molecule. (4) It can attract an electron pair from the carbon-hydrogen bond of an adjacent carbon atom so as to liberate a proton and to form an olefin (III to IV). The fourth possibility is the process by which many acid-catalyzcd elimination reactions occur. [Pg.105]

The supposition that a carbonium ion is formed as an intermediate in these reactions is still further supported by the observation that when ferZ-butyl esters are treated with sulfuric acid in dioxane solution, isobutylene is formed, and the process is completely reversible.15 Similarly, the reaction of tert-butyl benzqate with acetic acid in the presence of p-toluenesulfonic acid gave a small amount of isobutylene.16... [Pg.230]

Evidence for the presence of organic cations was provided by bright red or purple colors observed immediately upon addition of the carbonyl compounds to the catalyst-aromatic mixtures, and by isolation of side products derived from hydride shifts to intermediate carbonium ions. Mechanistically, these reactions are visualized as proceeding by initial Bideal-like attack of aromatic on the adsorbed conjugate acid derived from the carbonyl compound, with the formation of an intermediate tert-benzylic carbinol ... [Pg.335]

Carbonium ions are formed by splitting off hydrogen halide from the allyl halides. Since primary and secondary allyl halogenides are less reactive, only tertiary alkyl halogenides may be converted in high yield. Thus, sec. butyl chloride yields only 30 % of 2-methyl butyric acid whereas tert. butyl chloride forms pivalic acid in 76 % yield. [Pg.143]

The trityl group is stable to base, may be removed by hydrogenolysis, but is very susceptible to acid. It can be removed under conditions (i.e., 80% acetic acid, hour, 30°C) that will not affect the tert-BOC and CBz functions. A variety of acids may be used which include acetic acid, HCl in water, acetic acid, methanol and chloroform, and trifluoroacetic acid. The case of acidolysis is the result of the stabilized carbonium ion ... [Pg.63]


See other pages where Carbonium acids, tert is mentioned: [Pg.104]    [Pg.94]    [Pg.111]    [Pg.316]    [Pg.134]    [Pg.11]    [Pg.320]    [Pg.230]    [Pg.76]    [Pg.66]    [Pg.627]    [Pg.168]    [Pg.274]    [Pg.166]    [Pg.260]    [Pg.286]   
See also in sourсe #XX -- [ Pg.31 , Pg.637 ]




SEARCH



Carbonium

© 2024 chempedia.info