Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination reactions acid-catalyzed

Acid-Catalyzed Elimination Reactions. The simplest kind of elimination reaction is catalyzed by acids and proceeds through a transitory carbonium ion (p. 44). Consider tert-butyl alcohol. In the presence of acid, an oxonium ion is formed (I) which can dissociate into water and a carbonium ion (II). As with all carbonium ions, there are then four courses of reaction open. (1) It can react with another water molecule or anion. (2) It can rearrange. (3) It can abstract a hydrogen atom with a pair of electrons from another molecule. (4) It can attract an electron pair from the carbon-hydrogen bond of an adjacent carbon atom so as to liberate a proton and to form an olefin (III to IV). The fourth possibility is the process by which many acid-catalyzcd elimination reactions occur. [Pg.105]

Lyases are the enzymes responsible for catalyzing addition and elimination reactions. Lyase-catalyzed reactions involve the breaking of a bond between a carbon atom and another atom such as oxygen, sulfur, or another carbon atom. They are found in cellular processes, such as the citric acid cycle, and in organic synthesis, such as in the production of cyanohydrins. [Pg.107]

Enol formation can also be catalyzed by acid. The only difference between the base-catalyzed and acid-catalyzed reactions is the order of proton addition and elimination. In acid-catalyzed reactions, a proton is added first in base-catalyzed reactions, a proton is removed first. [Pg.665]

The use of a reagent bearing a basic center or the addition of a base to the reaction mixture was recognized as necessary to prevent the acid-catalyzed elimination of the elements of water from the intermediates. Since the publication of this work, a number of similar intermediates have been isolated from thioamides and a-halogeno carbonyl compounds (608, 609, 619, 739, 754, 801), and as a result of kinetic studies, the exact mechanism of this reaction has been well established (739, 821). [Pg.209]

Zaitsev s rule as applied to the acid catalyzed dehydration of alcohols is now more often expressed in a different way elimination reactions of alcohols yield the most highly substituted alkene as the major product Because as was discussed in Section 5 6 the most highly substituted alkene is also normally the most stable one Zaitsev s rule is sometimes expressed as a preference for predominant formation of the most stable alkene that could arise by elimination... [Pg.205]

As chemists proceeded to synthesize more complicated stmctures, they developed more satisfactory protective groups and more effective methods for the formation and cleavage of protected compounds. At first a tetrahydropyranyl acetal was prepared, by an acid-catalyzed reaction with dihydropyran, to protect a hydroxyl group. The acetal is readily cleaved by mild acid hydrolysis, but formation of this acetal introduces a new stereogenic center. Formation of the 4-methoxytetrahy-dropyranyl ketal eliminates this problem. [Pg.2]

This elimination reaction is the reverse of acid-catalyzed hydration, which was discussed in Section 6.2. Because a carbocation or closely related species is the intermediate, the elimination step would be expected to favor the more substituted alkene as discussed on p. 384. The El mechanism also explains the general trends in relative reactivity. Tertiary alcohols are the most reactive, and reactivity decreases going to secondary and primary alcohols. Also in accord with the El mechanism is the fact that rearranged products are found in cases where a carbocation intermediate would be expected to rearrange ... [Pg.392]

The mechanistic pattern established by study of hydration and alcohol addition reactions of ketones and aldehydes is followed in a number of other reactions of carbonyl compounds. Reactions at carbonyl centers usually involve a series of addition and elimination steps proceeding through tetrahedral intermediates. These steps can be either acid-catalyzed or base-catalyzed. The rate and products of the reaction are determined by the reactivity of these tetrahedral intermediates. [Pg.456]

The dehydration of -hydroxy ketones is a closely related reaction. In the case of 5,6-disubstituted 3-ketones, the 6-substituent usually remains in the less stable configuration. With acid catalyzed elimination, prolonged treatment or high concentration may cause epimerization ... [Pg.305]

Thioketals are readily formed by acid-catalyzed reaction with ethane-dithiol. Selective thioketal formation is achieved at C-3 in the presence of a 6-ketone by carrying out the boron trifluoride catalyzed reaction in diluted medium. Selective protection of the 3-carbonyl group as a thioketal has been effected in high yield with A" -3,17-diketones, A" -3,20-diketones and A" -3,l 1,17-triones in acetic acid at room temperature in the presence of p-toluenesulfonic acid. In the case of thioketals the double bond remains in the 4,5-position. This result is attributed to the greater nucleophilicity of sulfur as compared to oxygen, which promotes closure of intermediate (66) to the protonated cyclic mercaptal (67) rather than elimination to the 3,5-diene [cf. ketal (70) via intermediates (68) and (69)]." " ... [Pg.392]

The final variation of the Feist-Benary furan synthesis encompasses reactions of 1,3-dicarbonyls with 1,2-dibromoethyl acetate (52). For example, treatment of ethyl acetoacetate (9) with sodium hydride followed by addition of 52 at 50°C yields dihydrofuran 53. The product can be easily converted into the corresponding 2-methyl-3-furoate upon acid catalyzed elimination of the acetate, thus providing another strategy for the synthesis of 2,3-disubstituted furans. [Pg.165]

Bischler-Napieralski reaction conditions can be attributed, again, to the destabilizing ability of the trifluoromethyl group to the cationic transition state of the acid catalyzed elimination. Formation of compound 29 was ultimately accomplished by base catalyzed methanol elimination-conditions conditions that are quite unusual for isoquinoline formation. [Pg.462]

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

I Elimination reactions are, in a sense, the opposite of addition reactions. They occur when a single reactant splits into two products, often with formation of a small molecule such as wateT or HBr. An example is the acid-catalyzed reaction of an alcohol to yield water and an alkene. [Pg.138]

Acid-catalyzed hydration of isolated double bonds is also uncommon in biological pathways. More frequently, biological hydrations require that the double bond be adjacent to a carbonyl group for reaction to proceed. Fumarate, for instance, is hydrated to give malate as one step in the citric acid cycle of food metabolism. Note that the requirement for an adjacent carbonyl group in the addition of water is the same as that we saw in Section 7.1 for the elimination of water. We ll see the reason for the requirement in Section 19.13, but might note for now that the reaction is not an electrophilic addition but instead occurs... [Pg.221]

Acid-catalyzed ester hydrolysis can occur by more than one mechanism, depending on the structure of the ester. The usual pathway, however, is just the reverse of a Fischer esterification reaction (Section 21.3). The ester is first activated toward nucleophilic attack by protonation of the carboxyl oxygen atom, and nucleophilic addition of water then occurs. Transfer of a proton and elimination of alcohol yields the carboxylic acid (Figure 21.8). Because this hydrolysis reaction is the reverse of a Fischer esterification reaction, Figure 21.8 is the reverse of Figure 21.4. [Pg.809]

Basic hydrolysis occurs by nucleophilic addition of OH- to the amide carbonyl group, followed by elimination of amide ion (-NH2) and subsequent deprotonation of the initially formed carboxylic acid by amide ion. The steps are reversible, with the equilibrium shifted toward product by the final deprotonation of the carboxylic acid. Basic hydrolysis is substantially more difficult than the analogous acid-catalyzed reaction because amide ion is a very poor leaving group, making the elimination step difficult. [Pg.815]

Curran s synthesis of ( )-A9(l2)-capnellene [( )-2] is detailed in Schemes 30 and 31. This synthesis commences with the preparation of racemic bicyclic vinyl lactone 147 from ( )-norbomenone [( )-145] by a well-known route.61 Thus, Baeyer-Villiger oxidation of (+)-145 provides unsaturated bicyclic lactone 146, a compound that can be converted to the isomeric fused bicyclic lactone 147 by acid-catalyzed rearrangement. Reaction of 147 with methylmagne-sium bromide/CuBr SMe2 in THF at -20 °C takes the desired course and affords unsaturated carboxylic acid 148 in nearly quantitative yield. Iodolactonization of 148 to 149, followed by base-induced elimination, then provides the methyl-substituted bicyclic vinyl lactone 150 as a single regioisomer in 66% overall yield from 147. [Pg.413]

Thus, in contrast to benzothiepins, dibenzo compounds can be synthesized by direct acid-catalyzed elimination of water from hydroxy derivatives, or of amines from amino derivatives, at elevated temperatures due to their thermal stability. As in the case of benzothiepins, dibenzo derivatives can also be prepared by base-catalyzed elimination from the corresponding halo derivatives however, the yields are somewhat lower compared to the acid-catalyzed reactions. As a special case, an aziridine derivative was deaminated by palladium-catalyzed hydrogenation to afford the corresponding dibenzothiepin.69... [Pg.79]

The cyclohexyloxy(dimethyl)silyl unit in 8 serves as a hydroxy surrogate and is converted into an alcohol via the Tamao oxidation after the allylboration reaction. The allylsilane products of asymmetric allylboration reactions of the dimethylphenylsilyl reagent 7 are readily converted into optically active 2-butene-l, 4-diols via epoxidation with dimethyl dioxirane followed by acid-catalyzed Peterson elimination of the intermediate epoxysilane. Although several chiral (Z)-y-alkoxyallylboron reagents were described in Section 1.3.3.3.3.1.4., relatively few applications in double asymmetric reactions with chiral aldehydes have been reported. One notable example involves the matched double asymmetric reaction of the diisopinocampheyl [(Z)-methoxy-2-propenyl]boron reagent with a chiral x/ -dialkoxyaldehyde87. [Pg.307]

Ester formation is an example of a condensation reaction in which two molecules combine to form a larger one and a small molecule is eliminated (Fig. 19.4). The reaction is catalyzed by a small amount of strong acid, such as sulfuric acid. In an esterification of a carboxylic acid and an alcohol, the eliminated molecule is H20. [Pg.878]

In 1992/1994, Grubbs et al. [29] and MacDiarmid et al. [30] described an improved precursor route to high molecular weight, structurally regular PPP 1, by transition metal-catalyzed polymerization, of the cyclohexa-1,3-diene derivative 14 to a stereoregular precursor polymer 16. The final step of the reaction sequence is the thermal, acid-catalyzed elimination of acetic acid, to convert 16 into PPP 1. They obtained unsupported PPP films of a definite structure, which were, however, badly contaminated with large amounts of polyphosphoric acid. [Pg.172]

I 70 Base-catalyzed, Acid-catalyzed and Thermal Eliminations of Trimethylsilanol. Peterson Reactions OMe OMe... [Pg.242]


See other pages where Elimination reactions acid-catalyzed is mentioned: [Pg.105]    [Pg.761]    [Pg.830]    [Pg.1063]    [Pg.830]    [Pg.761]    [Pg.402]    [Pg.109]    [Pg.486]    [Pg.273]    [Pg.128]    [Pg.247]    [Pg.258]    [Pg.224]    [Pg.352]    [Pg.394]    [Pg.131]    [Pg.353]    [Pg.169]    [Pg.689]    [Pg.135]    [Pg.236]    [Pg.479]    [Pg.25]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Acid-catalyzed elimination

Elimination, acidity

© 2024 chempedia.info