Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonic anhydrase active site structure

The zinc acetate complex of tris(3-/-butyl-5-methylpyrazol-l-yl)borate was prepared as a structural model for carbonic anhydrase and comparison with the enzyme active site structures confirmed that the complexes are excellent structural models.239 A mononuclear zinc hydroxide complex can also be formed with the tris(pyrazolyl) borate ligand system as a structural model for carbonic anhydrase.240... [Pg.1164]

Carbon monoxide oxidase 893 Carbonic acid, pkCa value of 99 Carbonic anhydrase 443,676 - 678,710 active site structure 679 mechanism 678 turnover number of 458,678 Carbonium ion. See Carbocation 1,1 -Carbonyl-diimidazole 105s Carbonyl group... [Pg.910]

Compound 28.30 reacts with Zn(C104)2 6H20 to give a complex [Zn(28.30)(OH)] that is a model for the active site of carbonic anhydrase. Suggest a structure for this complex. What properties does 28.30 possess that (a) mimic the coordination site in carbonic anhydrase and (b) control the coordination geometry around the Zn ion in the model complex. [Pg.861]

Using the carbonic anhydrases as examples, describe why convergent evolution is thought to have selected a common active-site structure. [Pg.145]

Shown in Fig. 1 is the three-dimensional active-site structures of four representative zinc-containing enzymes carboxypeptidase and (3-lactamase belong to the hydrolase family, while carbonic anhydrase is one of... [Pg.1631]

Fig. 1 Active site structures of four zinc-containing enzymes (a) carboxypeptidase A from bovine pancreas, (b) (3-lactamase from Bacteroides fragilis, (c) human carbonic anhydrase. and (d) horse liver alcohol dehydrogenase. Fig. 1 Active site structures of four zinc-containing enzymes (a) carboxypeptidase A from bovine pancreas, (b) (3-lactamase from Bacteroides fragilis, (c) human carbonic anhydrase. and (d) horse liver alcohol dehydrogenase.
The value of the tris(pyrazolyl)hydroborato complexes [TpRR ]ZnOH is that they are rare examples of monomeric four-coordinate zinc complexes with a terminal hydroxide funtionality. Indeed, [TpBut]ZnOH is the first structurally characterized monomeric terminal hydroxide complex of zinc (149). As such, the monomeric zinc hydroxide complexes [TpRR ]ZnOH may be expected to play valuable roles as both structural and functional models for the active site of carbonic anhydrase. Although a limitation of the [TpRR ]ZnOH system resides with their poor solubility in water, studies on these complexes in organic solvents... [Pg.355]

As an illustration, we briefly discuss the SCC-DFTB/MM simulations of carbonic anhydrase II (CAII), which is a zinc-enzyme that catalyzes the interconversion of CO2 and HCO [86], The rate-limiting step of the catalytic cycle is a proton transfer between a zinc-bound water/hydroxide and the neutral/protonated His64 residue close to the protein/solvent interface. Since this proton transfer spans at least 8-10 A depending on the orientation of the His 64 sidechain ( in vs. out , both observed in the X-ray study [87]), the transfer is believed to be mediated by the water molecules in the active site (see Figure 7-1). To carry out meaningful simulations for the proton transfer in CAII, therefore, it is crucial to be able to describe the water structure in the active site and the sidechain flexibility of His 64 in a satisfactory manner. [Pg.182]

Theoretical calculations have been carried out on a number of zinc-containing enzymatic systems. For example, calculations on the mechanism of the Cu/Zn enzyme show the importance of the full protein environment to get an accurate description of the copper redox process, i.e., including the electronic effects of the zinc ion.989 Transition structures at the active site of carbonic anhydrase have been the subject of ab initio calculations, in particular [ZnOHC02]+, [ZnHC03H20]+, and [Zn(NH3)3HC03]+.990... [Pg.1234]

The first zinc enzyme to be discovered was carbonic anhydrase in 1940, followed by car-boxypeptidase A some 14 years later. They both represent the archetype of mono-zinc enzymes, with a central catalytically active Zn2+ atom bound to three protein ligands, and the fourth site occupied by a water molecule. Yet, despite the overall similarity of catalytic zinc sites with regard to their common tetrahedral [(XYZ)Zn2+-OH2] structure, these mononuclear zinc enzymes catalyse a wide variety of reactions, as pointed out above. The mechanism of action of the majority of zinc enzymes centres around the zinc-bound water molecule,... [Pg.198]

The carbonic anhydrase (Cam) in M. thermophila cells is elevated several fold when the energy source is shifted to acetate, suggesting a role for this enzyme in the acetate-fermentation pathway. It is proposed that Cam functions outside the cell membrane to convert CO2 to a charged species (reaction A4) thereby facilitating removal of product from the cytoplasm. Cam is the prototype of a new class (y) of carbonic anhydrases, independently evolved from the other two classes (a and P). The crystal structure of Cam reveals a novel left-handed parallel P-helix fold (Kisker et al. 1996). Apart from the histidines ligating zinc, the activesite residues of Cam have no recognizable analogs in the active sites of the a- and P-classes. Kinetic analyses establish that the enzyme has a zinc-hydroxide mechanism similar to that of Cab (Alber et al. 1999). [Pg.153]

It is interesting that although the Val-143— His mutation leads to a bulky side chain at the base of the hydrophobic pocket, the mutant enzyme exhibits only a 10 -fold loss of CO2 hydrase activity relative to the wild-type enzyme (Fierke et ai, 1991). In this mutant the Val-I43- His side chain packs differently in the pocket relative to the side chains of the Val-143—>Phe and Val-143- Tyr mutants (Alexander et ai, 1991). It is likely that differences in side-chain packing, as well as differences involving active-site solvent structure, are responsible for differences in enzyme-substrate association behavior among the residue-143 mutants of carbonic anhydrase II. [Pg.317]

Despite the fact that carbonic anhydrase was the first zinc metalloenzyme identified1233 and a good deal is known of its structure, there is still controversy about the nature of the various active-site species and the detailed mechanisms of their action. In particular, the identity of the group with a pXa of 7 that is involved in the mechanism, and the stereochemistry around the zinc ion during catalysis, are still in dispute. The various mechanisms proposed assume either ionization of a histidine imidazole group (bound or not to the zinc) and nucleophilic attack on C02 by the coordinated imidazolate anion,1273,1274 or ionization of the Znn-coordinated water and nucleophilic attack on C02 by OH. 1271 Many papers on this problem have appeared recently and the extensive literature is the subject of the several review articles referred to above. [Pg.1004]

This is of relevance to the mechanism of carbonic anhydrase. This enzyme, which catalyzes the hydration of C02, has at its active site a Zn2+ ion ligated to the imidazole rings of three of its histidines. The classic mechanism for the reaction is that the fourth ligand is a water molecule which ionizes with a pKa of 7.37 The reactive species is considered to be the zinc-bound hydroxyl. Chemical studies show that zinc-bound hydroxyls are no exception to the rule of high reactivity. The H20 in structure 2.31 ionizes with a pKa of 8.7 and catalyzes the hydration of carbon dioxide and acetaldehyde.38... [Pg.49]

Until more concrete structural information is obtained, the discussion on the catalytic mechanism of carbonic anhydrase must remain rather speculative. The experimental evidence requires the presence in the active site of a basic group being in some manner linked to the metal ion. This group is generally thought to play a critical role either as a nucleophile in a direct reaction with the substrate, or through general base catlysis. Several schemes for the function of carbonic anhydrase have been proposed (16, 41, 50, 78, 79) ... [Pg.175]

The 2.0 A electron density map of carboxypeptidase A shows three zinc-protein contacts (91). The ligands have been identified as histidine-69, glutamic acid-72 and histidine-196 (91, 101), where the numbers indicate the positions of the residues in the sequence counted from the N-terminal end. The geometry of the complex is irregular but resembles a distorted tetrahedron with an open position directed towards the active site pocket, and presumably occupied by water in the resting enzyme (91). The similarity with the tentative structure of the metal-binding site in carbonic anhydrase is striking. [Pg.181]


See other pages where Carbonic anhydrase active site structure is mentioned: [Pg.332]    [Pg.309]    [Pg.93]    [Pg.189]    [Pg.2992]    [Pg.25]    [Pg.189]    [Pg.278]    [Pg.355]    [Pg.369]    [Pg.1165]    [Pg.1165]    [Pg.426]    [Pg.108]    [Pg.333]    [Pg.37]    [Pg.157]    [Pg.138]    [Pg.148]    [Pg.160]    [Pg.165]    [Pg.229]    [Pg.481]    [Pg.997]    [Pg.1002]    [Pg.384]    [Pg.602]    [Pg.608]   
See also in sourсe #XX -- [ Pg.679 ]

See also in sourсe #XX -- [ Pg.679 ]

See also in sourсe #XX -- [ Pg.679 ]

See also in sourсe #XX -- [ Pg.679 ]




SEARCH



Active sites structures

Anhydrase

Carbon structure

Carbonate structure

Carbonic anhydrase

Carbonic anhydrase (— carbonate

Carbonic anhydrase active site

Carbonic anhydrases

Carbonic anhydrases activators

Site Structure

Site structural

© 2024 chempedia.info