Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonates enol esters

The following acid-catalyzed cyclizations leading to steroid hormone precursors exemplify some important facts an acetylenic bond is less nucleophilic than an olelinic bond acetylenic bonds tend to form cyclopentane rather than cyclohexane derivatives, if there is a choice in proton-catalyzed olefin cyclizations the thermodynamically most stable Irons connection of cyclohexane rings is obtained selectively electroneutral nucleophilic agents such as ethylene carbonate can be used to terminate the cationic cyclization process forming stable enol derivatives which can be hydrolyzed to carbonyl compounds without this nucleophile and with trifluoroacetic acid the corresponding enol ester may be obtained (M.B. Gravestock, 1978, A,B P.E. Peterson, 1969). [Pg.279]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

The acylation of enamino ketones can take place on oxygen or on carbon. While reaction at nitrogen is a possibility, the N-acylated products are themselves acylating agents, and further reaction normally takes place. The first reported acylation of enamino ketones (72) was that of 129, prepared by acylation of the enamine (113), which was shown to have undergone O acylation because on mild hydrolysis the enol ester (130) could be isolated. A similar reaction took place with other aliphatic acid chlorides (80) and with dibasic acid chlorides [e.g., with succinyl chloride to give 118 above]. [Pg.142]

Enolizable compounds can be used for Meerwein reactions provided that the keto-enol equilibrium is not too far on the side of the ketone for example, P-dicar-bonyl compounds such as acetylacetone are suitable (Citterio and Ferrario, 1983). The arylation of enol esters or ethers (10.12) affords a convenient route for arylating aldehydes and ketones at the a-carbon atom (Scheme 10-48). Silyl enol ethers [10.12, R = Si(CH3)3] can be used instead of enol ethers (Sakakura et al., 1985). The reaction is carried out in pyridine. [Pg.246]

The acid-catalyzed hydrolysis of enol esters (RCOOCR =CR) can take place either by the normal Aac2 mechanism or by a mechanism involving initial protonation on the double-bond carbon, similar to the mechanism for the hydrolysis of enol ethers given in 10-6, ° depending on reaction conditions. In either case, the products are the carboxylic acid RCOOH and the aldehyde or ketone R2" CHCOR. ... [Pg.474]

Geranyl chloride can be prepared from geraniol by the careful use of triphenylphosphine in carbon tetrachloride. Tris(dimethylamino)phosphine reacts with carbon tetrachloride to form the complex (42) which can be used to form the enol esters (43) from acid anhydrides. Similarly, aldehydes form the alkenes (44), and esters or amides of trichloroacetic acid are converted to glycidic esters. ... [Pg.9]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

S. Hanessian, P. C. Tyler, and Y. Chapleur, Reaction of lithium dimethylcuprate with confor-mationally biased acyloxy enol esters. Regio and stereocontrolled access to functionalized six-carbon chiral synthons. Tetrahedron Lett. 22 4583 (1981). [Pg.255]

Enol carbonates Di-f-butyl dicarbonate, 94 Potassium hexamethyldisilazide, 257 Enol esters Enol acetates Acetic anhydride, 93 Bis(7i5-cyclooctadienyl)ruthenium(II), 35... [Pg.388]

Crossed Claisen condensations can be chemoselective even when the nonenolizable ester is not a better electrophile than the enolizable ester. This can be accomplished by a suitable choice of reaction conditions. The nonenolizable ester is mixed with the base and the enoliz-able ester is added slowly to that mixture. The enolate of the enolizable ester then reacts mostly with the nonenolizable ester for statistical reasons it reacts much less with the noneno-lized form of the enolizable ester, which is present only in rather small concentration. Carbonic acid esters and benzoic acid esters are nonenolizable esters of the kind just described. [Pg.577]

The same research group has also developed the ruthenium-catalyzed inter-molecular addition of carboxylic acids to carbon-carbon triple bonds [4]. When a-hydroxy acids 3 were employed with terminal alkynes, 1,3-dioxolan-4-ones 5 were synthesized via cyclization of enol ester intermediates 4 (Eq. 2) [5]. [Pg.251]

Aldehydes, ketones, carboxylic esters, carboxylic amides, imines and iV,jV-disubstituted hydrazones react as electrophiles at their sp2-hybridized carbon atoms. These compounds also become nucleophiles, if they contain an H atom in the a position relative to their C=0 or C=N bonds. This is because they are C,H-acidic at that position, that is, the H atom in the a position can be removed with a base (Figure 10.1). The deprotonation forms the conjugate bases of these substrates, which are called enolates. Depending on the origins of these enolates, they may be called aldehyde enolates, ketone enolates, ester enolates, or amide enolates. The conjugate bases of imines and hydra-zones are called aza-enolates. The reactions discussed in this chapter all proceed via enolates. [Pg.373]

This catalytic reaction is a unique synthesis involving carbon dioxide. RuCl2(PMe3)(p-cymene) also catalyzes the addition of a variety of carboxylic acids to alkynes to give enol esters in one step. The presence of the basic phosphine is necessary to direct the addition of the carboxylate... [Pg.240]

In the enolate, the oxygen atom has more of the negative charge, but the carbon atom has more of the HOMO. One important consequence is that we can expect reactions dominated by charges and electrostatic interactions to occur on oxygen and reactions dominated by orbital interactions to occur on carbon. Thus acyl chlorides tend to react at oxygen to give enol esters, while alkyl halides tend to react at carbon. [Pg.528]

Reactions catalyzed by transition-metal complexes allow the synthesis of a variety of esters ruthenium(II) promotes the addition of acids to alkynes,379 380 e.g. 2,6-difluorobenzoic acid (9) undergoes addition to but-l-en-3-yne to furnish the enol ester 10.380 Aryl bromides381 and aryl or vinyl triflates,382-384 but also aryl chlorides when their tricarbonylchromium(O) complexes are used,385 react with palladium382- 385 or cobalt complexes38 to form a C —M bond. Insertion of carbon monoxide into the carbon-metal bond followed by trapping with an alcohol or phenol leads to ester formation, e.g. triflate 11 gives ester 12.382... [Pg.585]

Even with these developments, the synthetic potential of acetoacetic ester was still not completely exhausted. Notice in the transformations that not all four of the carbon atoms of this reagent are used. In the concluding step of the synthesis, the COOEt or CH3CO group is usually removed as if it were simply an extraneous pendant. The strive to find a 100% utilization of the acetoacetic ester carbon skeleton was realized with the development of a method for substitution at vinylic positions with the use of cuprate reagents (Section 2.12). It turns out that a similar reaction can be carried out with the enol esters of 1,3-dicarbonyl compounds. [Pg.155]

Appropriate quenching of a reductively formed lithium enolate with a carboxylic acid anhydride, chloride, methyl chloroformate or diethyl phosphorochloridate yields the corresponding enol esters, enol carbonates or enol phosphates. These derivatives may be transformed into specific alkenes via reductive cleavage of the vinyl oxygen function, as illustrated by the example in Scheme 8. [Pg.528]

The arylation of enol esters has also been improved (95). Previously a wide range of products were produced including j8-aryl carbonyls, arylated enol esters, styrene, and stilbene derivatives (96). It has also been found that arylated enol esters can be obtained as major products if the reactions are carried out with stoichiometric amounts of aryl mercuric acetate and palladium acetate in anhydrous acetonitrile or in excess enol ester solution. The products are those arising from addition of the phenyl group to the carbons not containing the ester. Thus, with vinyl acetate and phenyl mercuric acetate, the product is the enol acetate of phenyl acetaldehyde ... [Pg.404]


See other pages where Carbonates enol esters is mentioned: [Pg.391]    [Pg.339]    [Pg.181]    [Pg.32]    [Pg.150]    [Pg.569]    [Pg.58]    [Pg.1529]    [Pg.491]    [Pg.417]    [Pg.246]    [Pg.391]    [Pg.133]    [Pg.108]    [Pg.290]    [Pg.137]    [Pg.1340]    [Pg.137]    [Pg.585]    [Pg.441]    [Pg.59]    [Pg.104]    [Pg.1452]   
See also in sourсe #XX -- [ Pg.6 , Pg.395 ]

See also in sourсe #XX -- [ Pg.395 ]

See also in sourсe #XX -- [ Pg.6 , Pg.395 ]

See also in sourсe #XX -- [ Pg.395 ]




SEARCH



Carbonate esters

Carbonic esters

Enol carbonates

Enol esters

Enolates enol esters

Ester enolate

Esters enolates

Esters enolization

© 2024 chempedia.info