Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic reactions with electrophilic carbon moieties

In this chapter, we will be studying addition reactions to carbon-carbon multiple bonds this is the converse process of the eliminations that we studied in the previous chapter. Addition to carbon-heteroatom multiple bonds is coming up in Chapter 14. Nucleophiles, electrophiles, and radicals can all add across double bonds first, we will concentrate on electrophiles and radicals, as nucleophiles only add readily when the double bond bears a group (such as a carbonyl, nitro, or nitrile Chapter 17) capable of accepting electron density. Reactions with electrophiles or radicals add two moieties, atoms or groups, by a stepwise process the two atoms or groups are not added simultaneously. However, there is another class of reactions where the two new bonds are made simultaneously—these are called concerted reactions. [Pg.421]

The intramolecular Michael addition11 of a nucleophilic oxygen to an a,/ -unsaturated ester constitutes an attractive alternative strategy for the synthesis of the pyran nucleus, a strategy that could conceivably be applied to the brevetoxin problem (see Scheme 2). For example, treatment of hydroxy a,/ -unsaturated ester 9 with sodium hydride furnishes an alkoxide ion that induces ring formation by attacking the electrophilic //-carbon of the unsaturated ester moiety. This base-induced intramolecular Michael addition reaction is a reversible process, and it ultimately affords the thermodynamically most stable product 10 (92% yield). [Pg.734]

Two-component methods represent the most widely applied principles in sulfone syntheses, including C—S bond formation between carbon and RSOz species of nucleophilic, radical or electrophilic character as well as oxidations of thioethers or sulfoxides, and cheletropic reactions of sulfur dioxide. Three-component methods use sulfur dioxide as a binding link in order to connect two carbons by a radical or polar route, or use sulfur trioxide as an electrophilic condensation agent to combine two hydrocarbon moieties by a sulfonyl bridge with elimination of water. [Pg.166]

With electrophiles such as hydrogen halides, perfluoropropadiene affords products with the central carbon atom of the allene moiety being protonated [57]. Although HX are normally considered as electrophiles, these reactions with tetrafluoropropa-diene may be nucleophilic in nature [57]. [Pg.614]

Accordingly, many reactions can be performed on the sidewalls of the CNTs, such as halogenation, hydrogenation, radical, electrophilic and nucleophilic additions, and so on [25, 37, 39, 42-44]. Exhaustively explored examples are the nitrene cycloaddition, the 1,3-dipolar cycloaddition reaction (with azomethinylides), radical additions using diazonium salts or radical addition of aromatic/phenyl primary amines. The aryl diazonium reduction can be performed by electrochemical means by forming a phenyl radical (by the extrusion of N2) that couples to a double bond [44]. Similarly, electrochemical oxidation of aromatic or aliphatic primary amines yields an amine radical that can be added to the double bond on the carbon surface. The direct covalent attachment of functional moieties to the sidewalls strongly enhances the solubility of the nanotubes in solvents and can also be tailored for different... [Pg.131]

A general type of chemical reaction between two compounds, A and B, such that there is a net reduction in bond multiplicity (e.g., addition of a compound across a carbon-carbon double bond such that the product has lost this 77-bond). An example is the hydration of a double bond, such as that observed in the conversion of fumarate to malate by fumarase. Addition reactions can also occur with strained ring structures that, in some respects, resemble double bonds (e.g., cyclopropyl derivatives or certain epoxides). A special case of a hydro-alkenyl addition is the conversion of 2,3-oxidosqualene to dammara-dienol or in the conversion of squalene to lanosterol. Reactions in which new moieties are linked to adjacent atoms (as is the case in the hydration of fumarate) are often referred to as 1,2-addition reactions. If the atoms that contain newly linked moieties are not adjacent (as is often the case with conjugated reactants), then the reaction is often referred to as a l,n-addition reaction in which n is the numbered atom distant from 1 (e.g., 1,4-addition reaction). In general, addition reactions can take place via electrophilic addition, nucleophilic addition, free-radical addition, or via simultaneous or pericycUc addition. [Pg.32]

Being aware of the fact that a hetero-substituted carbon-carbon double bond is convertible into a carbonyl group, one can use a-hetero-substituted lithio-alkenes 2 as nucleophilic acylation reagents 142 and 143, which display the umpoled d reactivity, provided that the carbanionic character is effective. Depending on the hetero-snbstitnent X, the conversion of the vinyl moiety into a carbonyl gronp can be effected either by hydrolysis or by ozonolysis. The former procednre has been applied preferentially in the case of lithiated vinyl ethers, whereas the latter has been nsed in particnlar for cleavage of the double bond in such products that result from the reaction of hthiated vinyl bromides with electrophiles (Scheme 17). [Pg.877]

Electrophilic and nucleophilic reactions of 2-(2-thienyl)thieno[2,3-cf pyrimidine (346), prepared as shown in Scheme 99, permits a conclusion concerning the reactivity compared with that of thiophene bearing an electron deficient substituent in position 2. Both nitration and bromination primarily occur in the thiophene moiety whereas lithium organic reagents (methyllithium, butyllithium) add at carbon atom 4 (77BSF676). Bromination of (324) yields the 5- (or 6-) bromo derivative (68CR(C)(267)697). [Pg.1020]

A less common approach to the synthesis of phosphinates is the reaction of electrophilic phosphonates with carbon nucleophiles such as Grignard reagents or lithium enolates. For example, the phosphinic acid analogue 71 of the amino acid statine was synthesized by displacement of tert-butyl lithioacetate on a 5-phenyl phosphonothioate 70 (Scheme 23)d104l The racemic diastereomers of the 5-phenyl phosphonothioate were obtained in pure form, and the displacement of the phenylsulfanyl moiety was found to be stereospecific, although the stereocenter at phosphorus would later be lost on hydrolysis of the ester. A similar displacement reaction has been described using the p h osp h on och I ori d ate.1711... [Pg.519]

These highly reactive yet stable species are strong electrophiles of tetraphilic character, since nucleophiles may attack three different carbon atoms (a,/ ,a ) and iodine. In most reactions the first step is a Michael addition at fi-C with formation of an alkenyl zwitterionic intermediate (ylide) which normally eliminates iodoben-zene, generating an alkylidene carbene then, a 1,2-shift of the nucleophile ensues. The final result is its combination with the alkynyl moiety which behaves formally as an alkynyl cation. The initial adduct may react with an electrophile, notably a proton, in which case alkenyl iodonium salts are obtained also, cyclopentenes may be formed by intramolecular C-H 1,5-insertion from the alkylidenecarbenes ... [Pg.167]

It is very well known that jr-allyl palladium complex 1, which is a key intermediate for the Tsuji-Trost type allylation, has an electrophilic character and reacts with nucleophiles to afford the corresponding allylation products. We discovered that bis 7r-allyl palladium complex 2 is nucleophilic and reacts with electophiles such as aldehydes [27] and imines [28-32] (Scheme 2, Structure 2). We have also shown that bis 7r-allyl palladium complex 2 can act as an amphiphilic catalytic allylating agent it reacts with both nucleophilic and electrophilic carbons at once to produce double allylation products [33]. These complexes incorporate two allyl moieties that can bind with different hapticity to palladium (Scheme 3). The different complexes may interconvert by ligand coordination. The complexes 2a, 2b and 2c are called as r]3,r]3-bisallypalladium complex (also called bis-jr-allylpalladium complex), r)l,r)3-bis(allyl)palladium complex, -bis(allyl)palladium complex, respectively. Bis zr-allyl palladium complex 2 can easily be generated by reaction of mono-allylpalladium complex 1 and allylmetal species 3 (Scheme 4) [33-36]. Because of the unique catalytic activities of the bis zr-allyl palladium complex 2, a number of interesting cascade reactions appeared in the literature. The subject of the present chapter is to review some recent synthetic and mechanistic aspects of the interesting palladium catalyzed cascade reactions which in-... [Pg.93]

The Michael addition represents an extremely efficient synthetic method for achieving chain elongation by adding a three (or more) carbon fragment electrophile to a nucleophilic moiety. Notice that the typical Michael electrophiles (e.g. 90) are products of condensation of carbonyl compounds and can be easily formed via the aldol-like condensation, the Wittig reaction (with ylides like 81), the Perkin reaction, or the Mannich reaction (see below). [Pg.85]

Low-valent titanium alkoxide complexes have proved to be particularly useful in intramolecular nucleophilic acyl substitution (INAS) reactions. Addition of propargyl alcohol derivatives to 236 has been used as an efficient and practical method for the synthesis of allenyltitanium compounds (Scheme 43).197 Performing the reaction with a homopropargylic carbonate provides access to an alkenyltitanium compound with a lactone moiety.198 This methodology has since been extended to include olefinic carbonates and, through trapping with appropriate electrophiles such as aldehydes and iodine, affords substituted lactones.199... [Pg.273]


See other pages where Nucleophilic reactions with electrophilic carbon moieties is mentioned: [Pg.72]    [Pg.566]    [Pg.152]    [Pg.324]    [Pg.208]    [Pg.171]    [Pg.251]    [Pg.22]    [Pg.7]    [Pg.62]    [Pg.389]    [Pg.96]    [Pg.129]    [Pg.123]    [Pg.79]    [Pg.108]    [Pg.111]    [Pg.208]    [Pg.376]    [Pg.84]    [Pg.120]    [Pg.677]    [Pg.630]    [Pg.630]    [Pg.220]    [Pg.543]    [Pg.22]    [Pg.254]    [Pg.891]    [Pg.516]    [Pg.421]    [Pg.475]    [Pg.475]    [Pg.286]   


SEARCH



Carbon electrophile

Carbon electrophiles

Carbon nucleophile

Carbon nucleophiles

Carbon reaction with electrophile

Carbon reaction with nucleophile

Carbon with nucleophiles

Carbonate reactions with

Electrophile nucleophile

Electrophilicity nucleophilicity

Nucleophiles electrophiles

Nucleophiles with Electrophiles

Reaction electrophile-nucleophile

Reaction with carbon

Reaction with nucleophiles

Reactions nucleophilic/electrophilic

Reactions with carbon electrophiles

Reactions with electrophiles

With Electrophiles

© 2024 chempedia.info