Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon supercritical fluid

Fractional solution Anhy(hic carbonic Supercritical fluid extraction 647... [Pg.1850]

Teflon PFA [FLUORINE COMPOUNDS, ORGANIC - TETHAFLUOROETHYLENE-PERFLUOROVINYLETHERCOPOLYPffiRS] (Vol 11) -organic mat ls in carbon dioxide [SUPERCRITICAL FLUIDS] (Vol 23)... [Pg.337]

Supercritical Extraction. The use of a supercritical fluid such as carbon dioxide as extractant is growing in industrial importance, particularly in the food-related industries. The advantages of supercritical fluids (qv) as extractants include favorable solubiHty and transport properties, and the abiHty to complete an extraction rapidly at moderate temperature. Whereas most of the supercritical extraction processes are soHd—Hquid extractions, some Hquid—Hquid extractions are of commercial interest also. For example, the removal of ethanol from dilute aqueous solutions using Hquid carbon dioxide... [Pg.70]

Gas AntisolventRecrystallizations. A limitation to the RESS process can be the low solubihty in the supercritical fluid. This is especially evident in polymer—supercritical fluid systems. In a novel process, sometimes termed gas antisolvent (GAS), a compressed fluid such as CO2 can be rapidly added to a solution of a crystalline soHd dissolved in an organic solvent (114). Carbon dioxide and most organic solvents exhibit full miscibility, whereas in this case the soHd solutes had limited solubihty in CO2. Thus, CO2 acts as an antisolvent to precipitate soHd crystals. Using C02 s adjustable solvent strength, the particle size and size distribution of final crystals may be finely controlled. Examples of GAS studies include the formation of monodisperse particles (<1 fiva) of a difficult-to-comminute explosive (114) recrystallization of -carotene and acetaminophen (86) salt nucleation and growth in supercritical water (115) and a study of the molecular thermodynamics of the GAS crystallization process (21). [Pg.228]

Supercritical Fluid Chromatography. Supercritical fluid chromatography (sfc) combines the advantages of gc and hplc in that it allows the use of gc-type detectors when supercritical fluids are used instead of the solvents normally used in hplc. Carbon dioxide, -petane, and ammonia are common supercritical fluids (qv). For example, carbon dioxide (qv) employed at 7.38 MPa (72.9 atm) and 31.3°C has a density of 448 g/mL. [Pg.247]

Conventional nitrocellulose lacquer finishing leads to the emission of large quantities of solvents into the atmosphere. An ingeneous approach to reducing VOC emissions is the use of supercritical carbon dioxide as a component of the solvent mixture (172). The critical temperature and pressure of CO2 are 31.3°C and 7.4 MPa (72.9 atm), respectively. Below that temperature and above that pressure, CO2 is a supercritical fluid. It has been found that under these conditions, the solvency properties of CO2 ate similar to aromatic hydrocarbons (see Supercritical fluids). The coating is shipped in a concentrated form, then metered with supercritical CO2 into a proportioning airless spray gun system in such a ratio as to reduce the viscosity to the level needed for proper atomization. VOC emission reductions of 50% or more are projected. [Pg.357]

The two fluids most often studied in supercritical fluid technology, carbon dioxide and water, are the two least expensive of all solvents. Carbon dioxide is nontoxic, nonflammable, and has a near-ambient critical temperature of 31.1°C. CO9 is an environmentally friendly substitute for organic solvents including chlorocarbons and chloroflu-orocarbons. Supercritical water (T = 374°C) is of interest as a substitute for organic solvents to minimize waste in extraction and reaction processes. Additionally, it is used for hydrothermal oxidation of hazardous organic wastes (also called supercritical water oxidation) and hydrothermal synthesis. [Pg.2000]

Adsorption and Desorption Adsorbents may be used to recover solutes from supercritical fluid extracts for example, activated carbon and polymeric sorbents may be used to recover caffeine from CO9. This approach may be used to improve the selectivity of a supercritical fluid extraction process. SCF extraction may be used to regenerate adsorbents such as activated carbon and to remove contaminants from soil. In many cases the chemisorption is sufficiently strong that regeneration with CO9 is limited, even if the pure solute is quite soluble in CO9. In some cases a cosolvent can be added to the SCF to displace the sorbate from the sorbent. Another approach is to use water at elevated or even supercritical temperatures to facilitate desorption. Many of the principles for desorption are also relevant to extraction of substances from other substrates such as natural products and polymers. [Pg.2003]

H. Daimon and Y. Hirata, Direct coupling of capillary supercritical fluid chromatography with superaitical fluid extraction using modified carbon dioxide , J. High Resolut. Chromatogr. 17 809-813 (1994). [Pg.149]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

Above the critical temperature and pressure, a substance is referred to as a supercritical fluid. Such fluids have unusual solvent properties that have led to many practical applications. Supercritical carbon dioxide is used most commonly because it is cheap, nontoxic, and relatively easy to liquefy (critical T = 31°C, P = 73 atm). It was first used more than 20 years ago to extract caffeine from coffee dichloromethane, CH2C12, long used for this purpose, is both a narcotic and a potential carcinogen. Today more than 10s metric tons of decaf coffee are made annually using supercritical C02. It is also used on a large scale to extract nicotine from tobacco and various objectionable impurities from the hops used to make beer. [Pg.232]

The dense fluid that exists above the critical temperature and pressure of a substance is called a supercritical fluid. It may be so dense that, although it is formally a gas, it is as dense as a liquid phase and can act as a solvent for liquids and solids. Supercritical carbon dioxide, for instance, can dissolve organic compounds. It is used to remove caffeine from coffee beans, to separate drugs from biological fluids for later analysis, and to extract perfumes from flowers and phytochemicals from herbs. The use of supercritical carbon dioxide avoids contamination with potentially harmful solvents and allows rapid extraction on account of the high mobility of the molecules through the fluid. Supercritical hydrocarbons are used to dissolve coal and separate it from ash, and they have been proposed for extracting oil from oil-rich tar sands. [Pg.440]

Studies of reversed micelles dispersed in supercritical fluids have shown their ability to solubihze hydrophihc substances, including biomolecules and dyes, opening the door to many new applications [60,61]. In particular, solutions of reversed micelles in liquid and supercritical carbon dioxide have been suggested as novel media for processes generating a minimum amount of waste and with a low energy requirement [62]. [Pg.478]

Although critical pressures are many times greater than atmospheric pressure, supercritical fluids have important commercial applications. The most important of these is the use of supercritical carbon dioxide as a solvent. Supercritical CO2 diffuses through a solid matrix rapidly, and it transports materials well because it has a lower... [Pg.813]


See other pages where Carbon supercritical fluid is mentioned: [Pg.206]    [Pg.780]    [Pg.789]    [Pg.789]    [Pg.789]    [Pg.794]    [Pg.230]    [Pg.8]    [Pg.88]    [Pg.130]    [Pg.546]    [Pg.219]    [Pg.222]    [Pg.224]    [Pg.225]    [Pg.226]    [Pg.229]    [Pg.373]    [Pg.242]    [Pg.165]    [Pg.111]    [Pg.2000]    [Pg.176]    [Pg.127]    [Pg.137]    [Pg.433]    [Pg.39]    [Pg.391]    [Pg.301]    [Pg.89]    [Pg.170]    [Pg.138]    [Pg.156]    [Pg.137]    [Pg.451]    [Pg.218]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



© 2024 chempedia.info