Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon steady-state

In an oversimplified way, it may be stated that acids of the volcanoes have reacted with the bases of the rocks the compositions of the ocean (which is at the fkst end pokit (pH = 8) of the titration of a strong acid with a carbonate) and the atmosphere (which with its 2 = 10 atm atm is nearly ki equdibrium with the ocean) reflect the proton balance of reaction 1. Oxidation and reduction are accompanied by proton release and proton consumption, respectively. In order to maintain charge balance, the production of electrons, e, must eventually be balanced by the production of. The redox potential of the steady-state system is given by the partial pressure of oxygen (0.2 atm). Furthermore, the dissolution of rocks and the precipitation of minerals are accompanied by consumption and release, respectively. [Pg.212]

Carbon Dioxide Transport. Measuring the permeation of carbon dioxide occurs far less often than measuring the permeation of oxygen or water. A variety of methods ate used however, the simplest method uses the Permatran-C instmment (Modem Controls, Inc.). In this method, air is circulated past a test film in a loop that includes an infrared detector. Carbon dioxide is appHed to the other side of the film. AH the carbon dioxide that permeates through the film is captured in the loop. As the experiment progresses, the carbon dioxide concentration increases. First, there is a transient period before the steady-state rate is achieved. The steady-state rate is achieved when the concentration of carbon dioxide increases at a constant rate. This rate is used to calculate the permeabiUty. Figure 18 shows how the diffusion coefficient can be deterrnined in this type of experiment. The time lag is substituted into equation 21. The solubiUty coefficient can be calculated with equation 2. [Pg.500]

Although the continuous-countercurrent type of operation has found limited application in the removal of gaseous pollutants from process streams (Tor example, the removal of carbon dioxide and sulfur compounds such as hydrogen sulfide and carbonyl sulfide), by far the most common type of operation presently in use is the fixed-bed adsorber. The relatively high cost of continuously transporting solid particles as required in steady-state operations makes fixed-bed adsorption an attractive, economical alternative. If intermittent or batch operation is practical, a simple one-bed system, cycling alternately between the adsorption and regeneration phases, 1 suffice. [Pg.2187]

This program helps calculate the rate of methanol formation in mol/m s at any specified temperature, and at different hydrogen, carbon monoxide and methanol concentrations. This simulates the working of a perfectly mixed CSTR specified at discharge condition, which is the same as these conditions are inside the reactor at steady-state operation. Corresponding feed compositions and volumetric rates can be calculated from simple material balances. [Pg.219]

MeV, ,ean 0.049 MeV) with a half-life of 5715 30 and this is sufficiently long to enable a steady-state equilibrium concentration to be established in the biosphere. Plants and animals therefore contain 1.2 x 10 °% of their carbon as whilst they are living, and this leads to a /3-activity of 15.3 counts per min per gram... [Pg.276]

The carbon-14 formed by this nuclear reaction is eventually incorporated into the carbon dioxide of the air. A steady-state concentration, amounting to about one atom of carbon-14 for every 1012 atoms of carbon-12, is established in atmospheric C02. More specifically, the concentration of C-14 is such that a sample containing one gram of carbon has an activity of 15.3 atoms/min. A living plant, taking in carbon dioxide, has this same activity, as do planteating animals or human beings. [Pg.519]

In practice, carbon limited chemostat cultures are used to estimate the P/O quotient These conditions are used because they favour the most efficient conversion of the carbon substrate into cellular material, ie the highest efficiency of energy conservation. The steady state respiration rate (qo,) is measured as a function of dilution rate (specific growth rate) and Yq can be obtained from the reciprocal of the slope of the plot. qo, is also known as the metabolic quotient for oxygen or the specific rate of oxygen consumption. [Pg.50]

As already shown in Figure 6.3b the system exhibits remarkable electrophilic promotional behaviour with p values up to 20.64 This is also shown in Fig. 8.60 which depicts a galvanostatic transient. Application of a negative current between the Pt catalyst-working electrode and the Au counter electrode causes a sharp increase in all reaction rates. In the new steady state of the catalyst (achieved within lhr of current application) the catalytic rate increase of C02 and N2 production is about 700%, while lesser enhancement (250-400%) is observed in the rates of CO and N20 production. The appearance of rate maxima immediately after current application can be attributed to the reaction of NO with previously deposited carbon.64... [Pg.413]

The quantity of primary production that is exported from the upper ocean is said to be equivalent to new production (18, 19) New primary production is that associated with allocthonous nutrients (i.e., those upwelled or mixed into the euphotic zone or input via rivers and rain). In order for steady state to be maintained, an equivalent flux out of the euphotic zone is required. Earlier studies (19) suggested that sediment-trap measurements of particulate organic carbon (POC) flux were equivalent to new primary production however, recently it has become clear that these measurements probably represent only a... [Pg.397]

Once the model was complete, it was adjusted to a steady state condition and tested using historic carbon isotope data from the atmosphere, oceans and polar ice. Several important parameters were calculated and chosen at this stage. Sensitivity analysis indicated that results dispersal of the missing carbon - were significantly influenced by the size of the vegetation carbon pool, its assimilation rate, the concentration of preindustrial atmospheric carbon used, and the CO2 fertilization factor. The model was also sensitive to several factors related to fluxes between ocean reservoirs. [Pg.418]

The models also assume a steady-state condition which suggests that the carbon cycle is structured, stable, and balanced and will remain so indefinitely. This mechanistic view of biogeochemistry allows for little variation even though it is known that fluctuations and variation occur seasonally. The concentration of... [Pg.418]

Table 4-2 Steady-state carbon contents (unit Pg = lO g) for the four-reservoir model of Fig. 4-11 (a) during the imperturbed (pre-industrial) situation (b) after the introduction of 1000 Pg carbon and (c) after the introduction of 6000 Pg carbon... Table 4-2 Steady-state carbon contents (unit Pg = lO g) for the four-reservoir model of Fig. 4-11 (a) during the imperturbed (pre-industrial) situation (b) after the introduction of 1000 Pg carbon and (c) after the introduction of 6000 Pg carbon...
If all fluxes are proportional to the reservoir contents, the percentage change in reservoir content will be equal for all the reservoirs. The non-linear relations discussed above give rise to substantial variations between the reservoirs. Note that the atmospheric reservoir is much more significantly perturbed than any of the other three reservoirs. Even in the case with a 6000 Pg input, the carbon content of the oceans does not increase by more than 12% at steady state. [Pg.73]

However, with "only" 1000 Pg emitted into the system, i.e. less than 3% of the total amount of carbon in the four reservoirs, the atmospheric reservoir would still remain significantly affected (20%) at steady state. In this case the change in oceanic carbon would be only 2% and hardly noticeable. The steady-state distributions are independent of where the addition occurs. If the CO2 from fossil fuel combustion were collected and dumped into the ocean, the final distribution would still be the same. [Pg.73]

As shown in Fig. 10-13, there is also a flux of O2 produced during net photosynthesis from the ocean to the atmosphere and an export flux of particulate and dissolved organic matter out of the euphotic zone. For a steady-state system, new production should equal the flux of O2 to the atmosphere and the export of organic carbon (Eppley and Peterson, 1979) (when all are expressed in the same units, e.g., moles of carbon). Such an ideal state probably rarely exists because the euphotic zone is a dynamic place. Unfortunately, there have been no studies where all three fluxes were measured at the same time. Part of the difficulty is that each flux needs to be integrated over different time scales. The oxygen flux approach has been applied in the subarctic north Pacific (Emerson et al, 1991) and subtropical Pacific (Emerson et al, 1995, 1997) and Atlantic (Jenkins and Goldman, 1985). The organic carbon export approach has... [Pg.248]

Carbon is released from the lithosphere by erosion and resides in the oceans ca. 10 years before being deposited again in some form of oceanic sediment. It remains in the lithosphere on the average 10 years before again being released by erosion (Broecker, 1973). The amount of carbon in the ocean-atmosphere-biosphere system is maintained in a steady state by geologic processes the role of biological processes is, however, of profound importance... [Pg.297]

The subsequent fate of the assimilated carbon depends on which biomass constituent the atom enters. Leaves, twigs, and the like enter litterfall, and decompose and recycle the carbon to the atmosphere within a few years, whereas carbon in stemwood has a turnover time counted in decades. In a steady-state ecosystem the net primary production is balanced by the total heterotrophic respiration plus other outputs. Non-respiratory outputs to be considered are fires and transport of organic material to the oceans. Fires mobilize about 5 Pg C/yr (Baes et ai, 1976 Crutzen and Andreae, 1990), most of which is converted to CO2. Since bacterial het-erotrophs are unable to oxidize elemental carbon, the production rate of pyroligneous graphite, a product of incomplete combustion (like forest fires), is an interesting quantity to assess. The inability of the biota to degrade elemental carbon puts carbon into a reservoir that is effectively isolated from the atmosphere and oceans. Seiler and Crutzen (1980) estimate the production rate of graphite to be 1 Pg C/yr. [Pg.300]

The gross flux of carbon from atmosphere to ocean is thus ca. 80 Pg C/yr. There are several complications with the above calculation. The isotopic ratios must be steady-state values, which are unavailable due to the changes resulting from atmospheric atom bomb testing. The few available pre-bomb measurements from the late 1950s (Broecker et ah, 1960) together with determinations in corals (Druffel and Linick, 1978) are invaluable tools for determin-... [Pg.300]

Throughout this chapter many of the arguments are based on an assumption of steady state. Before the agricultural and industrial revolutions, the carbon cycle presumably was in a quasi-balanced state. Natural variations still occur in this unperturbed environment the Little Ice Age, 300-400 years ago, may have influenced the carbon cycle. The production rate of varies on time scales of decades and centuries (Stuiver and Quay, 1980,1981), implying that the pre-industrial radiocarbon distribution may not have been in steady state. [Pg.303]

Box, E. O. (1988). Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere, /. Appl. Meteorol. 17,1109-1124. [Pg.310]

Continuous Stirred Tanks with Biomass Recycle. When the desired product is excreted, closing the system with respect to biomass offers a substantial reduction in the cost of nutrients. The idea is to force the cells into a sustained stationary or maintenance period where there is relatively little substrate used to grow biomass and where production of the desired product is maximized. One approach is to withhold some key nutrient so that cell growth is restricted, but to supply a carbon source and other components needed for the desired product. It is sometimes possible to maintain this state for weeks or months and to achieve high-volumetric productivities. There will be spontaneous cell loss (i.e., kd > 0), and true steady-state operation requires continuous purging and makeup. The purge can be achieved by incomplete separation and recycle... [Pg.457]


See other pages where Carbon steady-state is mentioned: [Pg.1502]    [Pg.1940]    [Pg.6]    [Pg.663]    [Pg.287]    [Pg.10]    [Pg.11]    [Pg.35]    [Pg.114]    [Pg.532]    [Pg.384]    [Pg.10]    [Pg.30]    [Pg.206]    [Pg.6]    [Pg.1070]    [Pg.144]    [Pg.78]    [Pg.79]    [Pg.206]    [Pg.406]    [Pg.414]    [Pg.423]    [Pg.255]    [Pg.298]    [Pg.300]    [Pg.436]    [Pg.437]    [Pg.504]   
See also in sourсe #XX -- [ Pg.106 , Pg.111 ]




SEARCH



© 2024 chempedia.info