Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon oxides water

Bitumen + Fuel + 02 - Carbon Oxides + Water Vapor + Qp (11)... [Pg.430]

Combustion of transition metal organometallic compounds produces a mixtures of simple compounds (metal oxides, carbon oxides, water, nitrogen) which is subject to exact analysis. Thermal decomposition or high temperature iodination of the same compounds cannot necessarily be expected to produce simple materials, with the result that identification is often a difficult problem. This is typified by diene derivatives of iron carbonyl10, where side reactions of the dienes (e.g. polymerization) follow disruption of the iron-diene bonds. The oligomeric mixture can be parti-... [Pg.77]

Flue gas The air coming out of a chimney after combustion in the burner it is venting. Flue gas includes, nitrogen oxides, carbon oxides, water vapor, sulfur oxides, particles, and many chemical pollutants. [Pg.604]

A oxygen B ethylene R acetaldehyde P carbon oxides, water... [Pg.545]

Whatever tbe feed employed, the oxidation processes are characterized by very high exothermicity, requiring costly heat transfer installations and accompanied by considerable production of energy in the form of steam. The lack of selectivity of this type of transformation also leads to the co-production.of large amounts of carbon oxides, water and partly-oxidized by-products. Hence the maleic anhydride recovery and purification step is relatively complex. [Pg.301]

The ready reversibility of this reaction is essential to the role that qumones play in cellular respiration the process by which an organism uses molecular oxygen to convert Its food to carbon dioxide water and energy Electrons are not transferred directly from the substrate molecule to oxygen but instead are transferred by way of an electron trans port chain involving a succession of oxidation-reduction reactions A key component of this electron transport chain is the substance known as ubiquinone or coenzyme Q... [Pg.1013]

Sellaite, see Magnesium fluoride Senarmontite, see Antimony(III) oxide Siderite, see Iron(II) carbonate Siderotil, see Iron(II) sulfate 5-water Silica, see Silicon dioxide Silicotungstic acid, see Silicon oxide—tungsten oxide—water (1/12/26)... [Pg.275]

Valentinite, see Antimony(III) oxide Verdigris, see Copper acetate hydrate Vermillion, see Mercury(II) sulflde Villiaumite, see Sodium fluoride Vitamin B3, see Calcium (+)pantothenate Washing soda, see Sodium carbonate 10-water Whitlockite, see Calcium phosphate Willemite, see Zinc silicate(4—)... [Pg.275]

At still higher temperatures, when sufficient oxygen is present, combustion and "hot" flames are observed the principal products are carbon oxides and water. Key variables that determine the reaction characteristics are fuel-to-oxidant ratio, pressure, reactor configuration and residence time, and the nature of the surface exposed to the reaction 2one. The chemistry of hot flames, which occur in the high temperature region, has been extensively discussed (60-62) (see Col ustion science and technology). [Pg.338]

An important side reaction in all free-radical nitrations is reaction 10, in which unstable alkyl nitrites are formed (eq. 10). They decompose to form nitric oxide and alkoxy radicals (eq. 11) which form oxygenated compounds and low molecular weight alkyl radicals which can form low molecular weight nitroparaffins by reactions 7 or 9. The oxygenated hydrocarbons often react further to produce even lighter oxygenated products, carbon oxides, and water. [Pg.35]

Aniline can be safely incinerated in properly designed faciHties. It should be mixed with other combustibles such as No. 2 fuel oil to ensure that sufficient heating values are available for complete combustion of aniline to carbon dioxide, water, and various oxides of nitrogen. Abatement of nitrogen oxides may be required to comply with air poUution standards of the region. [Pg.232]

Synthesis Gas Preparation Processes. Synthesis gas for ammonia production consists of hydrogen and nitrogen in about a three to one mole ratio, residual methane, argon introduced with the process air, and traces of carbon oxides. There are several processes available for synthesis gas generation and each is characterized by the specific feedstock used. A typical synthesis gas composition by volume is hydrogen, 73.65% nitrogen, 24.55% methane, <1 ppm-0.8% argon, 100 ppm—0.34% carbon oxides, 2—10 ppm and water vapor, 0.1 ppm. [Pg.340]

Shift Conversion. Carbon oxides deactivate the ammonia synthesis catalyst and must be removed prior to the synthesis loop. The exothermic water-gas shift reaction (eq. 23) provides a convenient mechanism to maximize hydrogen production while converting CO to the more easily removable CO2. A two-stage adiabatic reactor sequence is normally employed to maximize this conversion. The bulk of the CO is shifted to CO2 in a high... [Pg.348]

Dehydration. Use of molecular sieve driers for final clean-up of the carbon oxides and water in the synthesis gas to less than 1 ppm levels has gained prominence in low energy ammonia plant designs. The sieves are usually located at the interstage of the synthesis gas compressor to reduce volume requirements. The purified make-up gas can then be combined with the recycle and routed direcdy to the converter. [Pg.350]

Propylene oxide is also produced in Hquid-phase homogeneous oxidation reactions using various molybdenum-containing catalysts (209,210), cuprous oxide (211), rhenium compounds (212), or an organomonovalent gold(I) complex (213). Whereas gas-phase oxidation of propylene on silver catalysts results primarily in propylene oxide, water, and carbon dioxide as products, the Hquid-phase oxidation of propylene results in an array of oxidation products, such as propylene oxide, acrolein, propylene glycol, acetone, acetaldehyde, and others. [Pg.141]

Alkyl sulfonic acids are prepared by the oxidation of thiols (36,37). This reaction is not quite as simple as would initially appear, because the reaction does not readily go to completion. The use of strong oxidants can result in the complete oxidation of the thiol to carbon dioxide, water, and sulfur dioxide. [Pg.12]

Catalytic Pyrolysis. This should not be confused with fluid catalytic cracking, which is used in petroleum refining (see Catalysts, regeneration). Catalytic pyrolysis is aimed at producing primarily ethylene. There are many patents and research articles covering the last 20 years (84—89). Catalytic research until 1988 has been summarized (86). Almost all catalysts produce higher amounts of CO and CO2 than normally obtained with conventional pyrolysis. This indicates that the water gas reaction is also very active with these catalysts, and usually this leads to some deterioration of the olefin yield. Significant amounts of coke have been found in these catalysts, and thus there is a further reduction in olefin yield with on-stream time. Most of these catalysts are based on low surface area alumina catalysts (86). A notable exception is the catalyst developed in the former USSR (89). This catalyst primarily contains vanadium as the active material on pumice (89), and is claimed to produce low levels of carbon oxides. [Pg.443]

Activated alumina and phosphoric acid on a suitable support have become the choices for an iadustrial process. Ziac oxide with alumina has also been claimed to be a good catalyst. The actual mechanism of dehydration is not known. In iadustrial production, the ethylene yield is 94 to 99% of the theoretical value depending on the processiag scheme. Traces of aldehyde, acids, higher hydrocarbons, and carbon oxides, as well as water, have to be removed. Fixed-bed processes developed at the beginning of this century have been commercialized in many countries, and small-scale industries are still in operation in Brazil and India. New fluid-bed processes have been developed to reduce the plant investment and operating costs (102,103). Commercially available processes include the Lummus processes (fixed and fluidized-bed processes), Halcon/Scientific Design process, NIKK/JGC process, and the Petrobras process. In all these processes, typical ethylene yield is between 94 and 99%. [Pg.444]

Theoretical Oxygen and Air for Combustion The amount of oxidant (oxygen or air) just sufficient to burn the carbon, hydrogen, and sulfur in a fuel to carbon dioxide, water vapor, and sulfur dioxide is the theoretical or stoichiometric oxygen or air requirement. The chemical equation for complete combustion of a fuel is... [Pg.2379]

Thus oxygen can feature in a wide variety of compounds including ozone, oxides, water, hydrogen peroxide, carbonates, nitrates/nitrites, etc. It comprises about 21% of normal air (by volume). [Pg.31]

Combustion processes are the most important source of air pollutants. Normal products of complete combustion of fossil fuel, e.g. coal, oil or natural gas, are carbon dioxide, water vapour and nitrogen. However, traces of sulphur and incomplete combustion result in emissions of carbon monoxide, sulphur oxides, oxides of nitrogen, unburned hydrocarbons and particulates. These are primary pollutants . Some may take part in reactions in the atmosphere producing secondary pollutants , e.g. photochemical smogs and acid mists. Escaping gas, or vapour, may... [Pg.502]


See other pages where Carbon oxides water is mentioned: [Pg.207]    [Pg.301]    [Pg.321]    [Pg.177]    [Pg.1819]    [Pg.17]    [Pg.18]    [Pg.264]    [Pg.261]    [Pg.89]    [Pg.379]    [Pg.237]    [Pg.207]    [Pg.301]    [Pg.321]    [Pg.177]    [Pg.1819]    [Pg.17]    [Pg.18]    [Pg.264]    [Pg.261]    [Pg.89]    [Pg.379]    [Pg.237]    [Pg.24]    [Pg.123]    [Pg.419]    [Pg.422]    [Pg.184]    [Pg.117]    [Pg.418]    [Pg.394]    [Pg.292]    [Pg.275]    [Pg.173]    [Pg.503]    [Pg.506]    [Pg.1178]    [Pg.112]    [Pg.956]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.4 , Pg.4 , Pg.5 , Pg.5 , Pg.7 ]




SEARCH



Carbonated waters

Oxidant water

Reactions carbon oxides with water

Water carbon)

Water oxidation

© 2024 chempedia.info