Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon octene

Unsaturated Hydrocarbons. Olefins from ethylene through octene have been converted into esters via acid-catalyzed nucleophilic addition. With ethylene and propjiene, only a single ester is produced using acetic acid, ethyl acetate and isopropyl acetate, respectively. With the butylenes, two products are possible j -butyl esters result from 1- and 2-butylenes, whereas tert-huty esters are obtained from isobutjiene. The C5 olefins give rise to three j iC-amyl esters and one /-amyl ester. As the carbon chain is lengthened, the reactivity of the olefin with organic acids increases. [Pg.381]

In their early studies, Schwartz and co-workers [5, 80] reported the zirconocene hydrido chloride [Cp2Zr(H)Cl] (1) as a reagent capable of reacting under mild conditions with a variey of non-functionalized alkenes to form isolable alkylzirconi-um(lV) complexes Cp2Zr(R)Cl in which the zirconium is attached to the least-hindered terminal primary carbon, irrespective of the original location of the double bond in the olefin chain. As an example, at room temperature in benzene, 1-octene, cis-4-octene and trows-4-octene all yield the n-octylzirconocene derivative (Scheme 8-6) [80]. [Pg.257]

The identification and quantification of potentially cytotoxic carbonyl compounds (e.g. aldehydes such as pentanal, hexanal, traw-2-octenal and 4-hydroxy-/mAW-2-nonenal, and ketones such as propan- and hexan-2-ones) also serves as a useful marker of the oxidative deterioration of PUFAs in isolated biological samples and chemical model systems. One method developed utilizes HPLC coupled with spectrophotometric detection and involves precolumn derivatization of peroxidized PUFA-derived aldehydes and alternative carbonyl compounds with 2,4-DNPH followed by separation of the resulting chromophoric 2,4-dinitrophenylhydrazones on a reversed-phase column and spectrophotometric detection at a wavelength of378 nm. This method has a relatively high level of sensitivity, and has been successfully applied to the analysis of such products in rat hepatocytes and rat liver microsomal suspensions stimulated with carbon tetrachloride or ADP-iron complexes (Poli etui., 1985). [Pg.16]

A catalyst used for the u-regioselective hydroformylation of internal olefins has to combine a set of properties, which include high olefin isomerization activity, see reaction b in Scheme 1 outlined for 4-octene. Thus the olefin migratory insertion step into the rhodium hydride bond must be highly reversible, a feature which is undesired in the hydroformylation of 1-alkenes. Additionally, p-hydride elimination should be favoured over migratory insertion of carbon monoxide of the secondary alkyl rhodium, otherwise Ao-aldehydes are formed (reactions a, c). Then, the fast regioselective terminal hydroformylation of the 1-olefin present in a low equilibrium concentration only, will lead to enhanced formation of n-aldehyde (reaction d) as result of a dynamic kinetic control. [Pg.460]

Monosubstituted Alkenes. Simple unbranched terminal alkenes that have only alkyl substituents, such as 1-hexene,2031-octene,209 or ally Icy clohexane230 do not undergo reduction in the presence of organosilicon hydrides and strong acids, even under extreme conditions.1,2 For example, when 1-hexene is heated in a sealed ampoule at 140° for 10 hours with triethylsilane and excess trifluoroacetic acid, only a trace of hexane is detected.203 A somewhat surprising exception to this pattern is the formation of ethylcyclohexane in 20% yield upon treatment of vinylcyclohexane with trifluoroacetic acid and triethylsilane.230 Protonation of the terminal carbon is thought to initiate a 1,2-hydride shift that leads to the formation of the tertiary 1-ethyl-1-cyclohexyl cation.230... [Pg.34]

The same types of catalyst have been employed in 1-octene hydroformylation, but with the substrates and products being transported to and from the reaction zone dissolved in a supercritical fluid (carbon dioxide) [9], The activity of the catalyst is increased compared with liquid phase operation, probably because of the better mass transport properties of scC02 than of the liquid. This type of approach may well reduce heavies formation because of the low concentration of aldehyde in the system, but the heavies that do form are likely to be insoluble in scC02, so may precipitate on and foul the catalyst. The main problem with this process, however, is likely to be the use of high pressure, which is common to all processes where supercritical fluids are used (see Section 9.8). [Pg.241]

Supercritical fluids (e.g. supercritical carbon dioxide, scCCb) are regarded as benign alternatives to organic solvents and there are many examples of their use in chemical synthesis, but usually under homogeneous conditions without the need for other solvents. However, SCCO2 has been combined with ionic liquids for the hydroformylation of 1-octene [16]. Since ionic liquids have no vapour pressure and are essentially insoluble in SCCO2, the product can be extracted from the reaction using CO2 virtually uncontaminated by the rhodium catalyst. This process is not a true biphasic process, as the reaction is carried out in the ionic liquid and the supercritical phase is only added once reaction is complete. [Pg.39]

Another way of getting around the problem of the separation of the catalyst from the substrate is via use of a flow reactor [38], Supercritical carbon dioxide has been used successfully as a medium for the hydroformylation of 1-octene using an immobilized rhodium catalyst. The catalyst is covalently fixed to silica through the modifying ligand A-(3-trimethoxysilyl-n-propyl)-4,5-bis(diphenylphosphino)phenoxazine (Figure 8.13). Selectivity was found to be... [Pg.178]

Flandin L, Hiltner A, Baer E. Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer. Polymer. 2001 Jan 42(2) 827-38. [Pg.251]

The new recycling concept was apphed to several C - C bond-forming reactions, for example, to the telomerization of butadiene with ethylene glycol or carbon dioxide, to the isomerizing hydroformylation of frans-4-octene and to the hydroamino-methylation of 1-octene with morpholine. [Pg.22]

Using mild reaction conditions (10 bar, 125 °C), a high conversion of trans-4-octene and a high selectivity to n-nonanal can be obtained with toluene as the solvent. Cyclic carbonates like propylene carbonate (PC) are also suitable solvents for the isomerizing hydroformylation of trans-4-octene. Furthermore, the selectivity to -nonanal is increased up to 95% when PC is used in a single phase. The product n-nonanal can be extracted with n-dodecane or with a mixture of dodecane isomers. [Pg.35]

Propylene carbonate is a good solvent of the rhodium precursor [Rh(acac) (00)2] and the phosphite ligand BIPHEPHOS and can thus be used as the catalyst phase in the investigation of the isomerizing hydroformylation of trans-4-octene to n-nonanal in a biphasic system [24]. As already mentioned, the reaction products can be extracted with the hydrocarbon dodecane. Instead of an additional extraction after the catalytic reaction, we carried out in-situ extraction experiments, where the products are separated from the catalytic propylene carbonate phase while the reaction is still in progress. Conversion of 96% and selectivity of 72% was achieved under comparably mild conditions (p(CO/H2) = 10 bar, T = 125 °C, 4 h, substrate/Rh = 200 1). [Pg.36]

Cyclodextrins are often used as inverse phase transfer catalysts [11-14]. They are able to intercalate hydrophobic substances and to transport them into a polar phase like water, where the reaction takes place. To study the influence of cyclodextrins on the isomerizing hydroformylation of frans-4-octene in the biphasic solvent system propylene carbonate/dodecane, the concentration of methylated /3-cyclodextrin was varied from 0.2 up to 2.0 mol.-% relative to the substrate frans-4-octene [24]. The results are given in Table 7. [Pg.36]

Table Influence of the addition of methylated /3-cyclodextrin in the two-phase system propylene carbonate/dodecane. Reaction conditions 0.1 mmol [Rh(acac)(CO)2], 0.5 mmol BIPHEPHOS, 19.4 mmol trans-4-octene, 20 ml propylene carbonate, 20 ml do-decane, p(CO/H2 = 1/1) = 10bar, T = 125 °C, t = 4h, stirring velocity 500 rpm... Table Influence of the addition of methylated /3-cyclodextrin in the two-phase system propylene carbonate/dodecane. Reaction conditions 0.1 mmol [Rh(acac)(CO)2], 0.5 mmol BIPHEPHOS, 19.4 mmol trans-4-octene, 20 ml propylene carbonate, 20 ml do-decane, p(CO/H2 = 1/1) = 10bar, T = 125 °C, t = 4h, stirring velocity 500 rpm...

See other pages where Carbon octene is mentioned: [Pg.198]    [Pg.196]    [Pg.198]    [Pg.196]    [Pg.432]    [Pg.439]    [Pg.510]    [Pg.389]    [Pg.156]    [Pg.354]    [Pg.620]    [Pg.7]    [Pg.54]    [Pg.713]    [Pg.67]    [Pg.728]    [Pg.66]    [Pg.263]    [Pg.7]    [Pg.159]    [Pg.159]    [Pg.182]    [Pg.184]    [Pg.52]    [Pg.245]    [Pg.22]    [Pg.27]    [Pg.349]    [Pg.1433]    [Pg.91]    [Pg.141]    [Pg.39]    [Pg.89]    [Pg.83]    [Pg.20]    [Pg.23]    [Pg.237]    [Pg.42]    [Pg.19]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



1- octen

1-Octene

Octenal

Octenes

Octenes 1-octene

© 2024 chempedia.info