Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide oxidation nickel oxide catalysts

Carbon monoxide oxidation is a relatively simple reaction, and generally its structurally insensitive nature makes it an ideal model of heterogeneous catalytic reactions. Each of the important mechanistic steps of this reaction, such as reactant adsorption and desorption, surface reaction, and desorption of products, has been studied extensively using modem surface-science techniques.17 The structure insensitivity of this reaction is illustrated in Figure 10.4. Here, carbon dioxide turnover frequencies over Rh(l 11) and Rh(100) surfaces are compared with supported Rh catalysts.3 As with CO hydrogenation on nickel, it is readily apparent that, not only does the choice of surface plane matters, but also the size of the active species.18-21 Studies of this system also indicated that, under the reaction conditions of Figure 10.4, the rhodium surface was covered with CO. This means that the reaction is limited by the desorption of carbon monoxide and the adsorption of oxygen. [Pg.340]

VI. Carbon Monoxide Oxidation on Modified Nickel Oxide Catalysts.. 68... [Pg.47]

The method outlined above in the case of zinc oxide will now be applied to the carbon monoxide oxidation on nickel oxide catalysts modified in both ways. If it is assumed, as before, that semiconductivity trends in the bulk and in the surface layer are qualitatively the same, a correlation between semiconduetivity and catalysis will be established if cationic impurities of valences lower and higher than 2 are found to affect the catalytic rate in opposite directions. [Pg.68]

If further work confirms our explanations which connect catalytic inversion with the inversion of physical properties of the modified nickel oxide catalysts, the correlation between semiconductivity and oxidation catalysis found in the Princeton work and in Schwab s studies will appear quite convincing. To sum up, the activation energy of the carbon monoxide oxidation has been found to decrease with increasing semiconductivity on both sides of the inversion point of physical properties of nickel oxide catalysts. [Pg.71]

Nickel oxide, prepared by dehydration of nickel hydroxide under vacuum at 250°C. [NiO(250)]y presents a greater activity in the room-temperature oxidation of carbon monoxide than nickel oxide prepared according to the same procedure at 200° C. [NiO(200)]> although the electrical properties of both oxides are identical. The reaction mechanism was investigated by a microcalorimetric technique. On NiO(200) the slowest step of the mechanism is CO. i(ads) + CO(ads) + Ni3+ 2 C02(g) + Ni2+, whereas on NiO(250) the rate-determining step is O (0ds) + CO(ads) + Ni3+ - C02(g) + Ni2+. These reaction mechanisms on NiO(200) and NiO(250), which explain the differences in catalytic activity, are correlated with local surface defects whose nature and concentration vary with the nature of the catalyst. [Pg.293]

The oxidation of carbon monoxide on nickel oxide has often been investigated (4, 6, 8, 9, II, 16, 17, 21, 22, 26, 27, 29, 32, 33, 36) with attempts to correlate the changes in the apparent activation energy with the modification of the electronic structure of the catalyst. Published results are not in agreement (6,11,21,22,26,27,32,33). Some discrepancies would be caused by the different temperature ranges used (27). However, the preparation and the pretreatments of nickel oxide were, in many cases, different, and consequently the surface structure of the catalysts—i.e., their composition and the nature and concentration of surface defects— were probably different. Therefore, an explanation of the disagreement may be that the surface structure of the semiconducting catalyst (and not only its surface or bulk electronic properties) influences its activity. [Pg.293]

In this chapter, we present an example of a study following the second line of approach. The catalytic activity of a highly divided stoichiometric nickel oxide, one of the best catalysts in oxidation reactions (18), has been studied, for several years, first at the Faculty des Sciences of Lyon and, then, at the Institut de Recherches sur la Catalyse, Villeurbanne, France, in carbon monoxide oxidation and related reactions (oxygen isotopic exchange, nitrous oxide decomposition) with the help of different experimental techniques. It is fortunate that the same type of investigations on the same material were also conducted at the Institute of Physical-Chemistry in Prague, Czechoslovakia. This allowed many comparisons and checks of experimental results and interpretations. [Pg.170]

The physical structure, which can be changed by suitable methods of catalyst manufacturing, is. of decisive importance (promoters high-melting oxides supports kieselguhr of cobalt and nickel catalysts pretreatment low-temperature reduction which limits the size of the crystals, or carbon monoxide treatment of iron catalysts which increases the surface by breaking up the structure with carbon). [Pg.336]

It is evident from examples like these that the investigation of electron transfer in catalysis is dependent on the availability of test reactions of well-known acceptor or donor type. Lately, it has become clear that sometimes the same reaction can exert both functions, depending on the conditions. Thus, the carbon monoxide oxidation is a donor reaction on most p-conducting catalysts, like nickel oxide 13) when the chemisorption of carbon monoxide governs the reaction rate. However, on zinc oxide, the chemisorption of the acceptor oxygen is rate-determining. [Pg.236]

The reaction is carried out in the Hquid phase at 373—463 K and 3 MPa (30 atm) of carbon monoxide pressure using nickel salt catalyst, or at 313 K and 0.1 MPa (1 atm) using nickel carbonyl as both the catalyst and the source of carbon monoxide. Either acryHc acid or methyl acrylate may be produced directly, depending on whether water or methanol is used as solvent (41). New technology for acryHc acid production uses direct propjdene oxidation rather than acetylene carbonylation because of the high cost of acetjdene. This new process has completely replaced the old in the United States (see... [Pg.51]

Ammonia production from natural gas includes the following processes desulfurization of the feedstock primary and secondary reforming carbon monoxide shift conversion and removal of carbon dioxide, which can be used for urea manufacture methanation and ammonia synthesis. Catalysts used in the process may include cobalt, molybdenum, nickel, iron oxide/chromium oxide, copper oxide/zinc oxide, and iron. [Pg.64]

Catalysts in an oxidized state showed high activity in the oxidation of carbon monoxide [nickel catalysts (146) ] and hydrogen [molybdenum catalysts (146a)]. [Pg.192]

Kolbel et al. (K16) examined the conversion of carbon monoxide and hydrogen to methane catalyzed by a nickel-magnesium oxide catalyst suspended in a paraffinic hydrocarbon, as well as the oxidation of carbon monoxide catalyzed by a manganese-cupric oxide catalyst suspended in a silicone oil. The results are interpreted in terms of the theoretical model referred to in Section IV,B, in which gas-liquid mass transfer and chemical reaction are assumed to be rate-determining process steps. Conversion data for technical and pilot-scale reactors are also presented. [Pg.120]

It is true, however, that many catalytic reactions cannot be studied conveniently, under given conditions, with usual adsorption calorimeters of the isoperibol type, either because the catalyst is a poor heat-conducting material or because the reaction rate is too low. The use of heat-flow calorimeters, as has been shown in the previous sections of this article, does not present such limitations, and for this reason, these calorimeters are particularly suitable not only for the study of adsorption processes but also for more complete investigations of reaction mechanisms at the surface of oxides or oxide-supported metals. The aim of this section is therefore to present a comprehensive picture of the possibilities and limitations of heat-flow calorimetry in heterogeneous catalysis. The use of Calvet microcalorimeters in the study of a particular system (the oxidation of carbon monoxide at the surface of divided nickel oxides) has moreover been reviewed in a recent article of this series (19). [Pg.238]

Fischer-Tropsch A process for converting synthesis gas (a mixture of carbon monoxide and hydrogen) to liquid fuels. Modified versions were known as the Synol and Synthol processes. The process is operated under pressure at 200 to 350°C, over a catalyst. Several different catalyst systems have been used at different periods, notably iron-zinc oxide, nickel-thoria on kieselgtihr, cobalt-thoria on kieselgiihr, and cemented iron oxide. The main products are C5-Cn aliphatic hydrocarbons the aromatics content can be varied by varying the process conditions. The basic reaction was discovered in 1923 by F. Fischer and... [Pg.106]

The use of equation (3.2) to study the behaviour of catalysts is known as solid electrolyte potentiometry (SEP). Wagner38 was the first to put forward the idea of using SEP to study catalysts under working conditions. Vayenas and Saltsburg were the first to apply the technique to the fundamental study of a catalytic reaction for the case of the oxidation of sulfur dioxide.39 Since then the technique has been widely used, with particular success in the study of periodic and oscillatory phenomena for such reactions as the oxidation of carbon monoxide on platinum, hydrogen on nickel, ethylene on platinum and propylene oxide on silver. [Pg.14]


See other pages where Carbon monoxide oxidation nickel oxide catalysts is mentioned: [Pg.62]    [Pg.18]    [Pg.302]    [Pg.7186]    [Pg.8]    [Pg.1024]    [Pg.191]    [Pg.204]    [Pg.374]    [Pg.270]    [Pg.259]    [Pg.67]    [Pg.102]    [Pg.7]    [Pg.23]    [Pg.594]    [Pg.192]    [Pg.63]    [Pg.177]    [Pg.281]    [Pg.209]    [Pg.170]    [Pg.200]    [Pg.146]    [Pg.73]    [Pg.37]    [Pg.69]    [Pg.299]    [Pg.152]   
See also in sourсe #XX -- [ Pg.178 , Pg.183 , Pg.259 ]




SEARCH



Carbon monoxide catalysts

Carbon monoxide oxidation catalyst

Carbon monoxide, oxidation

Carbon-nickel

Catalysts carbon

Monoxide oxides

Nickel carbonate

Nickel monoxide

Nickel oxide

Nickel oxide catalysts

Nickel oxide oxidation

Nickelic oxide

Nickelous oxide

© 2024 chempedia.info