Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide oxidation cobalt oxide catalyst

Lanthanum cobaltate catalysts carbon monoxide oxidation, kinetics, 36 281-283... [Pg.133]

The physical structure, which can be changed by suitable methods of catalyst manufacturing, is. of decisive importance (promoters high-melting oxides supports kieselguhr of cobalt and nickel catalysts pretreatment low-temperature reduction which limits the size of the crystals, or carbon monoxide treatment of iron catalysts which increases the surface by breaking up the structure with carbon). [Pg.336]

Cobalt has an odd number of electrons, and does not form a simple carbonyl in oxidation state 0. However, carbonyls of formulae Co2(CO)g, Co4(CO)i2 and CoJCO),6 are known reduction of these by an alkali metal dissolved in liquid ammonia (p. 126) gives the ion [Co(CO)4] ". Both Co2(CO)g and [Co(CO)4]" are important as catalysts for organic syntheses. In the so-called oxo reaction, where an alkene reacts with carbon monoxide and hydrogen, under pressure, to give an aldehyde, dicobalt octacarbonyl is used as catalyst ... [Pg.405]

Acetic acid (qv) can be produced synthetically (methanol carbonylation, acetaldehyde oxidation, butane/naphtha oxidation) or from natural sources (5). Oxygen is added to propylene to make acrolein, which is further oxidized to acryHc acid (see Acrylic acid and derivatives). An alternative method adds carbon monoxide and/or water to acetylene (6). Benzoic acid (qv) is made by oxidizing toluene in the presence of a cobalt catalyst (7). [Pg.94]

Ammonia production from natural gas includes the following processes desulfurization of the feedstock primary and secondary reforming carbon monoxide shift conversion and removal of carbon dioxide, which can be used for urea manufacture methanation and ammonia synthesis. Catalysts used in the process may include cobalt, molybdenum, nickel, iron oxide/chromium oxide, copper oxide/zinc oxide, and iron. [Pg.64]

The formation of polyesters from carbon monoxide and propylene oxide using a cobalt catalyst may involve an alternate coordination on the metal and an insertion of monomers into the carbon-transition metal bond240. ... [Pg.19]

Fischer-Tropsch A process for converting synthesis gas (a mixture of carbon monoxide and hydrogen) to liquid fuels. Modified versions were known as the Synol and Synthol processes. The process is operated under pressure at 200 to 350°C, over a catalyst. Several different catalyst systems have been used at different periods, notably iron-zinc oxide, nickel-thoria on kieselgtihr, cobalt-thoria on kieselgiihr, and cemented iron oxide. The main products are C5-Cn aliphatic hydrocarbons the aromatics content can be varied by varying the process conditions. The basic reaction was discovered in 1923 by F. Fischer and... [Pg.106]

Two molecules of carbon monoxide were successively incorporated into an epoxide in the presence of a cobalt catalyst and a phase transfer agent [29]. When styrene oxide was treated with carbon monoxide (0.1 MPa), excess methyl iodide, NaOH (0.50 M), and catalytic amounts of Co2(CO)8 and hexadecyltrimethylammonium bromide in benzene, 3-hydroxy-4-phenyl-2(5H)-furanone was produced in 65% yield (Scheme 7). A possible reaction mechanism was proposed as shown in Scheme 8 Addition of an in situ... [Pg.233]

Catalysts help customers comply cost-effectively with clean-air regulations. Hydrocarbons, carbon monoxide, and nitrogen oxides can be removed using supported precious metal catalysts. Organic sulfur compounds are converted to H2S using nickel/molybdenum or cobalt/molyb-denum on alumina catalysts. Sulfur can be recovered in a Claus process unit. The Claus catalytic converter is the heart of a sulfur recovery plant. [Pg.95]

The oxidation of toluene with air is carried out in the liquid phase using a cobalt catalyst at 160 to 170°C and 0.8 to 1.0 MPa (8 to 10 bar). The yield is well above 90% of theoretical. The gases leaving the reactor contain mainly nitrogen with small amounts of oxygen, carbon dioxide and carbon monoxide. The are cooled to 7 to 8°C in order to recover unreacted toluene. The water from the reaction is removed in a separator drum and toluene is recycled to the reactor264. [Pg.384]

Dynamic reactor studies are not new, but they have not been widely used in spite of the fact that they can provide a wealth of information regarding reaction mechanisms. In this research, oxidation of carbon monoxide over supported cobalt oxide (C03O4) was studied by both dynamic and conventional steady state methods. Among metal oxides, cobalt oxide is known to be one of the most active catalysts for CO and hydrocarbon oxidation, its activity being comparable to that of noble metals such as palladium or platinum. [Pg.271]

Poisoning by water vapor is a reversible effect and can be overcome by redrying the catalyst. Alkali poisoning, on the other hand, is permanent and may involve the formation of a salt, such as a manganite or cobaltite in the surface layer. In such cases, the manganese or cobalt atom is more completely coordinated and the reactivity of the surface considerably lessened thereby. Carbon monoxide is therefore oxidized only stoichiometrically by poisoned Mn02. [Pg.188]

Iron-chromium oxide catalysts, reduced with hydrogen-containing in the conversion plants, permit reactions temperatures of 350 to 380°C (high temperature conversion), the carbon monoxide content in the reaction gas is thereby reduced to ca. 3 to 4% by volume. Since, these catalysts are sensitive to impurities, cobalt- and molybdenum-(sulfide)-containing catalysts are used for gas mixtures with high sulfur contents. With copper oxide/zinc oxide catalysts the reaction proceeds at 200 to 250°C (low temperature conversion) and carbon monoxide contents of below 0.3% by volume are attained. This catalyst, in contrast to the iron oxide/chromium oxide high temperature conversion catalyst, is, however, very sensitive to sulfur compounds, which must be present in concentrations of less than 0.1 ppm. [Pg.36]

The selective production of methanol and of ethanol by carbon monoxide hydrogenation involving pyrolysed rhodium carbonyl clusters supported on basic or amphoteric oxides, respectively, has been discussed. The nature of the support clearly plays the major role in influencing the ratio of oxygenated products to hydrocarbon products, whereas the nuclearity and charge of the starting rhodium cluster compound are of minor importance. Ichikawa has now extended this work to a study of (CO 4- Hj) reactions in the presence of alkenes and to reactions over catalysts derived from platinum and iridium clusters. Rhodium, bimetallic Rh-Co, and cobalt carbonyl clusters supported on zinc oxide and other basic oxides are active catalysts for the hydro-formylation of ethene and propene at one atm and 90-180°C. Various rhodium carbonyl cluster precursors have been used catalytic activities at about 160vary in the order Rh4(CO)i2 > Rh6(CO)ig > [Rh7(CO)i6] >... [Pg.89]


See other pages where Carbon monoxide oxidation cobalt oxide catalyst is mentioned: [Pg.183]    [Pg.120]    [Pg.293]    [Pg.506]    [Pg.381]    [Pg.287]    [Pg.295]    [Pg.63]    [Pg.63]    [Pg.39]    [Pg.125]    [Pg.200]    [Pg.98]    [Pg.132]    [Pg.97]    [Pg.937]    [Pg.152]    [Pg.30]    [Pg.30]    [Pg.44]    [Pg.199]    [Pg.13]    [Pg.291]    [Pg.178]    [Pg.212]    [Pg.160]    [Pg.155]    [Pg.55]    [Pg.60]    [Pg.2849]    [Pg.6]    [Pg.431]   
See also in sourсe #XX -- [ Pg.178 , Pg.183 ]




SEARCH



Carbon monoxide catalysts

Carbon monoxide oxidation catalyst

Carbon monoxide, oxidation

Catalysts carbon

Cobalt carbonate

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt oxidant

Cobalt oxide

Cobalt oxide catalyst

Cobalt oxidization

Cobaltic carbonate

Cobaltous oxide catalysts

Monoxide oxides

Oxidation cobalt

© 2024 chempedia.info